commit files to HF hub
Browse files- pipeline.py +0 -113
pipeline.py
DELETED
@@ -1,113 +0,0 @@
|
|
1 |
-
import re
|
2 |
-
import torch
|
3 |
-
import numpy as np
|
4 |
-
from transformers import MimiModel, GenerationConfig
|
5 |
-
from transformers import Pipeline
|
6 |
-
|
7 |
-
class IndriPipeline(Pipeline):
|
8 |
-
def __init__(self, *args, **kwargs):
|
9 |
-
super().__init__(*args, **kwargs)
|
10 |
-
|
11 |
-
self.audio_tokenizer = MimiModel.from_pretrained('kyutai/mimi').to(device=self.device)
|
12 |
-
|
13 |
-
# TODO: Ideally all of this should come from model config
|
14 |
-
self.convert_token = self.tokenizer.encode('[convert]')
|
15 |
-
self.stop_token = self.tokenizer.encode('[stop]')
|
16 |
-
self.text_modality_token = self.tokenizer.encode('[text]')
|
17 |
-
self.acoustic_modality_token = self.tokenizer.encode('[mimi]')
|
18 |
-
self.num_codebooks = 8
|
19 |
-
self.audio_offset = 50257
|
20 |
-
|
21 |
-
self.model.generation_config = GenerationConfig(
|
22 |
-
eos_token_id=self.stop_token,
|
23 |
-
max_length=kwargs.get('max_length', 1024),
|
24 |
-
temperature=kwargs.get('temperature', 0.5),
|
25 |
-
top_k=kwargs.get('top_k', 15),
|
26 |
-
do_sample=kwargs.get('do_sample', True)
|
27 |
-
)
|
28 |
-
|
29 |
-
def _sanitize_parameters(self, **kwargs):
|
30 |
-
task = kwargs.get('task', 'tts')
|
31 |
-
assert task in ['tts', 'asr'], f'Task must be one of tts, asr. You provided: {task}'
|
32 |
-
|
33 |
-
speaker = kwargs.get('speaker', '[spkr_unk]')
|
34 |
-
|
35 |
-
preprocess_kwargs = {
|
36 |
-
'task': task,
|
37 |
-
'speaker': speaker
|
38 |
-
}
|
39 |
-
|
40 |
-
return preprocess_kwargs, {}, {}
|
41 |
-
|
42 |
-
def _prepare_tts_tokens(self, text_tokens, speaker):
|
43 |
-
input_tokens = np.hstack([
|
44 |
-
self.text_modality_token,
|
45 |
-
text_tokens,
|
46 |
-
self.convert_token,
|
47 |
-
self.acoustic_modality_token,
|
48 |
-
self.tokenizer.encode(speaker)
|
49 |
-
])
|
50 |
-
|
51 |
-
return input_tokens.tolist()
|
52 |
-
|
53 |
-
def _prepare_asr_tokens(self, audio_tokens):
|
54 |
-
pass
|
55 |
-
|
56 |
-
def _sanitize_text(self, text):
|
57 |
-
text = text.lower()
|
58 |
-
text = re.sub(r'\n+', ' ', text)
|
59 |
-
text = re.sub(r'[ \t]+', ' ', text)
|
60 |
-
|
61 |
-
text = re.sub(r'([,\.?])+', r'\1', text)
|
62 |
-
|
63 |
-
return text.strip()
|
64 |
-
|
65 |
-
def _deserialize_tokens(self, tokens, num_codebooks):
|
66 |
-
cb = [tokens[i::num_codebooks] for i in range(num_codebooks)]
|
67 |
-
min_shape = min([c.shape for c in cb])[0]
|
68 |
-
acoustic_tokens = torch.vstack([c[:min_shape] - 2048*i for i, c in enumerate(cb)])
|
69 |
-
|
70 |
-
return acoustic_tokens
|
71 |
-
|
72 |
-
def preprocess(self, inputs, speaker, task):
|
73 |
-
# TODO: Check for batching
|
74 |
-
if task == 'tts':
|
75 |
-
input_text = self._sanitize_text(inputs)
|
76 |
-
input_tokens = self.tokenizer.encode(input_text)
|
77 |
-
task_tokens = self._prepare_tts_tokens(input_tokens, speaker)
|
78 |
-
task_tokens = torch.tensor(task_tokens).unsqueeze(0)
|
79 |
-
|
80 |
-
elif task == 'asr':
|
81 |
-
raise ValueError('ASR task is not yet supported')
|
82 |
-
|
83 |
-
return {'task_tokens': task_tokens}
|
84 |
-
|
85 |
-
def _forward(self, model_inputs, **forward_args):
|
86 |
-
|
87 |
-
outputs = self.model.generate(model_inputs['task_tokens'])
|
88 |
-
audio_tokens = []
|
89 |
-
|
90 |
-
for idx, inputs in enumerate(model_inputs['task_tokens']):
|
91 |
-
truncated = outputs[idx, inputs.shape[-1]:]
|
92 |
-
end = torch.where(truncated == self.stop_token[0])[-1]
|
93 |
-
|
94 |
-
if end.shape[-1] > 0:
|
95 |
-
end = end[0]
|
96 |
-
else:
|
97 |
-
end = truncated.shape[-1]
|
98 |
-
|
99 |
-
truncated = truncated[:end]
|
100 |
-
truncated -= self.audio_offset
|
101 |
-
truncated = self._deserialize_tokens(torch.tensor(truncated), self.num_codebooks)
|
102 |
-
audio_tokens.append(truncated)
|
103 |
-
|
104 |
-
audio_tokens = torch.vstack(audio_tokens).unsqueeze(0)
|
105 |
-
audio = self.audio_tokenizer.decode(audio_tokens).audio_values
|
106 |
-
|
107 |
-
return {
|
108 |
-
'audio_tokens': audio_tokens, # (B, num_codebooks, num_samples)
|
109 |
-
'audio': audio # (B, 1, num_audio_samples)
|
110 |
-
}
|
111 |
-
|
112 |
-
def postprocess(self, model_outputs):
|
113 |
-
return model_outputs
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|