cmeraki commited on
Commit
b0f75d0
·
1 Parent(s): fc88a3b

commit files to HF hub

Browse files
Files changed (1) hide show
  1. pipeline.py +0 -113
pipeline.py DELETED
@@ -1,113 +0,0 @@
1
- import re
2
- import torch
3
- import numpy as np
4
- from transformers import MimiModel, GenerationConfig
5
- from transformers import Pipeline
6
-
7
- class IndriPipeline(Pipeline):
8
- def __init__(self, *args, **kwargs):
9
- super().__init__(*args, **kwargs)
10
-
11
- self.audio_tokenizer = MimiModel.from_pretrained('kyutai/mimi').to(device=self.device)
12
-
13
- # TODO: Ideally all of this should come from model config
14
- self.convert_token = self.tokenizer.encode('[convert]')
15
- self.stop_token = self.tokenizer.encode('[stop]')
16
- self.text_modality_token = self.tokenizer.encode('[text]')
17
- self.acoustic_modality_token = self.tokenizer.encode('[mimi]')
18
- self.num_codebooks = 8
19
- self.audio_offset = 50257
20
-
21
- self.model.generation_config = GenerationConfig(
22
- eos_token_id=self.stop_token,
23
- max_length=kwargs.get('max_length', 1024),
24
- temperature=kwargs.get('temperature', 0.5),
25
- top_k=kwargs.get('top_k', 15),
26
- do_sample=kwargs.get('do_sample', True)
27
- )
28
-
29
- def _sanitize_parameters(self, **kwargs):
30
- task = kwargs.get('task', 'tts')
31
- assert task in ['tts', 'asr'], f'Task must be one of tts, asr. You provided: {task}'
32
-
33
- speaker = kwargs.get('speaker', '[spkr_unk]')
34
-
35
- preprocess_kwargs = {
36
- 'task': task,
37
- 'speaker': speaker
38
- }
39
-
40
- return preprocess_kwargs, {}, {}
41
-
42
- def _prepare_tts_tokens(self, text_tokens, speaker):
43
- input_tokens = np.hstack([
44
- self.text_modality_token,
45
- text_tokens,
46
- self.convert_token,
47
- self.acoustic_modality_token,
48
- self.tokenizer.encode(speaker)
49
- ])
50
-
51
- return input_tokens.tolist()
52
-
53
- def _prepare_asr_tokens(self, audio_tokens):
54
- pass
55
-
56
- def _sanitize_text(self, text):
57
- text = text.lower()
58
- text = re.sub(r'\n+', ' ', text)
59
- text = re.sub(r'[ \t]+', ' ', text)
60
-
61
- text = re.sub(r'([,\.?])+', r'\1', text)
62
-
63
- return text.strip()
64
-
65
- def _deserialize_tokens(self, tokens, num_codebooks):
66
- cb = [tokens[i::num_codebooks] for i in range(num_codebooks)]
67
- min_shape = min([c.shape for c in cb])[0]
68
- acoustic_tokens = torch.vstack([c[:min_shape] - 2048*i for i, c in enumerate(cb)])
69
-
70
- return acoustic_tokens
71
-
72
- def preprocess(self, inputs, speaker, task):
73
- # TODO: Check for batching
74
- if task == 'tts':
75
- input_text = self._sanitize_text(inputs)
76
- input_tokens = self.tokenizer.encode(input_text)
77
- task_tokens = self._prepare_tts_tokens(input_tokens, speaker)
78
- task_tokens = torch.tensor(task_tokens).unsqueeze(0)
79
-
80
- elif task == 'asr':
81
- raise ValueError('ASR task is not yet supported')
82
-
83
- return {'task_tokens': task_tokens}
84
-
85
- def _forward(self, model_inputs, **forward_args):
86
-
87
- outputs = self.model.generate(model_inputs['task_tokens'])
88
- audio_tokens = []
89
-
90
- for idx, inputs in enumerate(model_inputs['task_tokens']):
91
- truncated = outputs[idx, inputs.shape[-1]:]
92
- end = torch.where(truncated == self.stop_token[0])[-1]
93
-
94
- if end.shape[-1] > 0:
95
- end = end[0]
96
- else:
97
- end = truncated.shape[-1]
98
-
99
- truncated = truncated[:end]
100
- truncated -= self.audio_offset
101
- truncated = self._deserialize_tokens(torch.tensor(truncated), self.num_codebooks)
102
- audio_tokens.append(truncated)
103
-
104
- audio_tokens = torch.vstack(audio_tokens).unsqueeze(0)
105
- audio = self.audio_tokenizer.decode(audio_tokens).audio_values
106
-
107
- return {
108
- 'audio_tokens': audio_tokens, # (B, num_codebooks, num_samples)
109
- 'audio': audio # (B, 1, num_audio_samples)
110
- }
111
-
112
- def postprocess(self, model_outputs):
113
- return model_outputs