Alassea commited on
Commit
dee9dac
·
1 Parent(s): c57bb15

Update model

Browse files
Files changed (4) hide show
  1. README.md +106 -0
  2. config.json +22 -0
  3. confusion_matrix.png +0 -0
  4. model.pkl +3 -0
README.md ADDED
@@ -0,0 +1,106 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: sklearn
3
+ tags:
4
+ - sklearn
5
+ - skops
6
+ - tabular-classification
7
+ model_file: model.pkl
8
+ widget:
9
+ structuredData:
10
+ word:
11
+ - lathem
12
+ - meer
13
+ - slaen
14
+ ---
15
+
16
+ # Model description
17
+
18
+ Middle Dutch NER with PassiveAgressiveClassifier
19
+
20
+ ## Intended uses & limitations
21
+
22
+ This model is not ready to be used in production.
23
+
24
+ ## Training Procedure
25
+
26
+ TESTING
27
+
28
+ ### Hyperparameters
29
+
30
+ The model is trained with below hyperparameters.
31
+
32
+ <details>
33
+ <summary> Click to expand </summary>
34
+
35
+ | Hyperparameter | Value |
36
+ |---------------------------|----------------------------------------------------------------------|
37
+ | memory | |
38
+ | steps | [('vectorizer', CountVectorizer()), ('classifier', MultinomialNB())] |
39
+ | verbose | False |
40
+ | vectorizer | CountVectorizer() |
41
+ | classifier | MultinomialNB() |
42
+ | vectorizer__analyzer | word |
43
+ | vectorizer__binary | False |
44
+ | vectorizer__decode_error | strict |
45
+ | vectorizer__dtype | <class 'numpy.int64'> |
46
+ | vectorizer__encoding | utf-8 |
47
+ | vectorizer__input | content |
48
+ | vectorizer__lowercase | True |
49
+ | vectorizer__max_df | 1.0 |
50
+ | vectorizer__max_features | |
51
+ | vectorizer__min_df | 1 |
52
+ | vectorizer__ngram_range | (1, 1) |
53
+ | vectorizer__preprocessor | |
54
+ | vectorizer__stop_words | |
55
+ | vectorizer__strip_accents | |
56
+ | vectorizer__token_pattern | (?u)\b\w\w+\b |
57
+ | vectorizer__tokenizer | |
58
+ | vectorizer__vocabulary | |
59
+ | classifier__alpha | 1.0 |
60
+ | classifier__class_prior | |
61
+ | classifier__fit_prior | True |
62
+
63
+ </details>
64
+
65
+ ### Model Plot
66
+
67
+ The model plot is below.
68
+
69
+ <style>#sk-container-id-1 {color: black;background-color: white;}#sk-container-id-1 pre{padding: 0;}#sk-container-id-1 div.sk-toggleable {background-color: white;}#sk-container-id-1 label.sk-toggleable__label {cursor: pointer;display: block;width: 100%;margin-bottom: 0;padding: 0.3em;box-sizing: border-box;text-align: center;}#sk-container-id-1 label.sk-toggleable__label-arrow:before {content: "▸";float: left;margin-right: 0.25em;color: #696969;}#sk-container-id-1 label.sk-toggleable__label-arrow:hover:before {color: black;}#sk-container-id-1 div.sk-estimator:hover label.sk-toggleable__label-arrow:before {color: black;}#sk-container-id-1 div.sk-toggleable__content {max-height: 0;max-width: 0;overflow: hidden;text-align: left;background-color: #f0f8ff;}#sk-container-id-1 div.sk-toggleable__content pre {margin: 0.2em;color: black;border-radius: 0.25em;background-color: #f0f8ff;}#sk-container-id-1 input.sk-toggleable__control:checked~div.sk-toggleable__content {max-height: 200px;max-width: 100%;overflow: auto;}#sk-container-id-1 input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {content: "▾";}#sk-container-id-1 div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-1 div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-1 input.sk-hidden--visually {border: 0;clip: rect(1px 1px 1px 1px);clip: rect(1px, 1px, 1px, 1px);height: 1px;margin: -1px;overflow: hidden;padding: 0;position: absolute;width: 1px;}#sk-container-id-1 div.sk-estimator {font-family: monospace;background-color: #f0f8ff;border: 1px dotted black;border-radius: 0.25em;box-sizing: border-box;margin-bottom: 0.5em;}#sk-container-id-1 div.sk-estimator:hover {background-color: #d4ebff;}#sk-container-id-1 div.sk-parallel-item::after {content: "";width: 100%;border-bottom: 1px solid gray;flex-grow: 1;}#sk-container-id-1 div.sk-label:hover label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-1 div.sk-serial::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: 0;}#sk-container-id-1 div.sk-serial {display: flex;flex-direction: column;align-items: center;background-color: white;padding-right: 0.2em;padding-left: 0.2em;position: relative;}#sk-container-id-1 div.sk-item {position: relative;z-index: 1;}#sk-container-id-1 div.sk-parallel {display: flex;align-items: stretch;justify-content: center;background-color: white;position: relative;}#sk-container-id-1 div.sk-item::before, #sk-container-id-1 div.sk-parallel-item::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: -1;}#sk-container-id-1 div.sk-parallel-item {display: flex;flex-direction: column;z-index: 1;position: relative;background-color: white;}#sk-container-id-1 div.sk-parallel-item:first-child::after {align-self: flex-end;width: 50%;}#sk-container-id-1 div.sk-parallel-item:last-child::after {align-self: flex-start;width: 50%;}#sk-container-id-1 div.sk-parallel-item:only-child::after {width: 0;}#sk-container-id-1 div.sk-dashed-wrapped {border: 1px dashed gray;margin: 0 0.4em 0.5em 0.4em;box-sizing: border-box;padding-bottom: 0.4em;background-color: white;}#sk-container-id-1 div.sk-label label {font-family: monospace;font-weight: bold;display: inline-block;line-height: 1.2em;}#sk-container-id-1 div.sk-label-container {text-align: center;}#sk-container-id-1 div.sk-container {/* jupyter's `normalize.less` sets `[hidden] { display: none; }` but bootstrap.min.css set `[hidden] { display: none !important; }` so we also need the `!important` here to be able to override the default hidden behavior on the sphinx rendered scikit-learn.org. See: https://github.com/scikit-learn/scikit-learn/issues/21755 */display: inline-block !important;position: relative;}#sk-container-id-1 div.sk-text-repr-fallback {display: none;}</style><div id="sk-container-id-1" class="sk-top-container" style="overflow: auto;"><div class="sk-text-repr-fallback"><pre>Pipeline(steps=[(&#x27;vectorizer&#x27;, CountVectorizer()),(&#x27;classifier&#x27;, MultinomialNB())])</pre><b>In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. <br />On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.</b></div><div class="sk-container" hidden><div class="sk-item sk-dashed-wrapped"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-1" type="checkbox" ><label for="sk-estimator-id-1" class="sk-toggleable__label sk-toggleable__label-arrow">Pipeline</label><div class="sk-toggleable__content"><pre>Pipeline(steps=[(&#x27;vectorizer&#x27;, CountVectorizer()),(&#x27;classifier&#x27;, MultinomialNB())])</pre></div></div></div><div class="sk-serial"><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-2" type="checkbox" ><label for="sk-estimator-id-2" class="sk-toggleable__label sk-toggleable__label-arrow">CountVectorizer</label><div class="sk-toggleable__content"><pre>CountVectorizer()</pre></div></div></div><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-3" type="checkbox" ><label for="sk-estimator-id-3" class="sk-toggleable__label sk-toggleable__label-arrow">MultinomialNB</label><div class="sk-toggleable__content"><pre>MultinomialNB()</pre></div></div></div></div></div></div></div>
70
+
71
+ ## Evaluation Results
72
+
73
+ You can find the details about evaluation process and the evaluation results.
74
+
75
+ | Metric | Value |
76
+ |-------------------------|----------|
77
+ | accuracy including 'O' | 0.905322 |
78
+ | f1 score including 'O | 0.905322 |
79
+ | precision excluding 'O' | 0.892857 |
80
+ | recall excluding 'O' | 0.404732 |
81
+ | f1 excluding 'O' | 0.556984 |
82
+
83
+ ### Confusion Matrix
84
+
85
+ ![Confusion Matrix](confusion_matrix.png)
86
+
87
+ # How to Get Started with the Model
88
+
89
+ [More Information Needed]
90
+
91
+ # Model Card Authors
92
+
93
+ Alassea TEST
94
+
95
+ # Model Card Contact
96
+
97
+ You can contact the model card authors through following channels:
98
+ [More Information Needed]
99
+
100
+ # Citation
101
+
102
+ **BibTeX**
103
+
104
+ ```
105
+ @inproceedings{...,year={2022}}
106
+ ```
config.json ADDED
@@ -0,0 +1,22 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "sklearn": {
3
+ "columns": [
4
+ "word"
5
+ ],
6
+ "environment": [
7
+ "scikit-learn=1.1.3"
8
+ ],
9
+ "example_input": {
10
+ "word": [
11
+ "lathem",
12
+ "meer",
13
+ "slaen"
14
+ ]
15
+ },
16
+ "model": {
17
+ "file": "model.pkl"
18
+ },
19
+ "model_format": "pickle",
20
+ "task": "tabular-classification"
21
+ }
22
+ }
confusion_matrix.png ADDED
model.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a75348eb1531248a0d2c352dee87b6cf592a5d22ba52d208589e7b694d499423
3
+ size 836005