mp
commited on
Commit
·
dbcfe2a
1
Parent(s):
fbc3e36
First commit updated Pharia4608 HF model
Browse files- config.json +44 -0
- model-00001-of-00006.safetensors +3 -0
- model-00002-of-00006.safetensors +3 -0
- model-00003-of-00006.safetensors +3 -0
- model-00004-of-00006.safetensors +3 -0
- model-00005-of-00006.safetensors +3 -0
- model-00006-of-00006.safetensors +3 -0
- model.safetensors.index.json +550 -0
- modeling_pharia.py +1008 -0
- special_tokens_map.json +1 -0
- tokenizer.json +0 -0
- tokenizer_config.json +0 -0
config.json
ADDED
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"LuminousForEmbedding"
|
4 |
+
],
|
5 |
+
"attention_bias": true,
|
6 |
+
"attention_dropout": 0.0,
|
7 |
+
"attn_adapter_config": {
|
8 |
+
"hidden_act": "gelu",
|
9 |
+
"hidden_size": 4608,
|
10 |
+
"intermediate_size": 1152,
|
11 |
+
"mlp_bias": false
|
12 |
+
},
|
13 |
+
"bias_name": null,
|
14 |
+
"bos_token_id": 1,
|
15 |
+
"causal_attention": true,
|
16 |
+
"embedding_head_out": null,
|
17 |
+
"eos_token_id": 2,
|
18 |
+
"hidden_act": "gelu",
|
19 |
+
"hidden_size": 4608,
|
20 |
+
"initializer_range": 0.02,
|
21 |
+
"intermediate_size": 18432,
|
22 |
+
"layer_norm_epsilon": 1e-05,
|
23 |
+
"lora_config": null,
|
24 |
+
"max_position_embeddings": 8192,
|
25 |
+
"mlp_adapter_config": {
|
26 |
+
"hidden_act": "gelu",
|
27 |
+
"hidden_size": 4608,
|
28 |
+
"intermediate_size": 1152,
|
29 |
+
"mlp_bias": false
|
30 |
+
},
|
31 |
+
"mlp_bias": true,
|
32 |
+
"mode": "generation",
|
33 |
+
"num_attention_heads": 36,
|
34 |
+
"num_hidden_layers": 27,
|
35 |
+
"num_key_value_heads": 4,
|
36 |
+
"pooling_method": "weighted_mean",
|
37 |
+
"rope_scaling": null,
|
38 |
+
"rope_theta": 1000000,
|
39 |
+
"tie_word_embeddings": false,
|
40 |
+
"torch_dtype": "float32",
|
41 |
+
"transformers_version": "4.47.0",
|
42 |
+
"use_cache": false,
|
43 |
+
"vocab_size": 128000
|
44 |
+
}
|
model-00001-of-00006.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e221468da74e83e5f8b8a88f0101d237373d949009edecde8b41ec4d24356c90
|
3 |
+
size 4879558848
|
model-00002-of-00006.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8e48a659b2e4eea0459d0095958136500d7a0030013f9b897dab0572fafc7350
|
3 |
+
size 4766823592
|
model-00003-of-00006.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:500250d195e309256164997117539f3f95fb8f4361ea7c74b92feced8e8d02bd
|
3 |
+
size 4766823624
|
model-00004-of-00006.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9cfd39f1d07f69118eeb401130eac44ad20721a07c5fb8b59312b009c1e60cf2
|
3 |
+
size 4766823696
|
model-00005-of-00006.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d1079c6a1c337d790903e50857453b7a90803bfd8ea326d6d435bdd3aeb1b4c8
|
3 |
+
size 4766823696
|
model-00006-of-00006.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:171d11620c89b2350fec5df4cdd75d5479b1c3cc7e26e707e8526740c532f86d
|
3 |
+
size 4153327456
|
model.safetensors.index.json
ADDED
@@ -0,0 +1,550 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"metadata": {
|
3 |
+
"total_size": 28100118528
|
4 |
+
},
|
5 |
+
"weight_map": {
|
6 |
+
"model.embed_tokens.weight": "model-00001-of-00006.safetensors",
|
7 |
+
"model.layers.0.input_layernorm.bias": "model-00001-of-00006.safetensors",
|
8 |
+
"model.layers.0.input_layernorm.weight": "model-00001-of-00006.safetensors",
|
9 |
+
"model.layers.0.mlp.down_proj.bias": "model-00001-of-00006.safetensors",
|
10 |
+
"model.layers.0.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
|
11 |
+
"model.layers.0.mlp.up_proj.bias": "model-00001-of-00006.safetensors",
|
12 |
+
"model.layers.0.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
|
13 |
+
"model.layers.0.post_attention_layernorm.bias": "model-00001-of-00006.safetensors",
|
14 |
+
"model.layers.0.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
|
15 |
+
"model.layers.0.post_attn_adapter.down_proj.weight": "model-00001-of-00006.safetensors",
|
16 |
+
"model.layers.0.post_attn_adapter.up_proj.weight": "model-00001-of-00006.safetensors",
|
17 |
+
"model.layers.0.post_mlp_adapter.down_proj.weight": "model-00001-of-00006.safetensors",
|
18 |
+
"model.layers.0.post_mlp_adapter.up_proj.weight": "model-00001-of-00006.safetensors",
|
19 |
+
"model.layers.0.self_attn.k_proj.bias": "model-00001-of-00006.safetensors",
|
20 |
+
"model.layers.0.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
|
21 |
+
"model.layers.0.self_attn.o_proj.bias": "model-00001-of-00006.safetensors",
|
22 |
+
"model.layers.0.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
|
23 |
+
"model.layers.0.self_attn.q_proj.bias": "model-00001-of-00006.safetensors",
|
24 |
+
"model.layers.0.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
|
25 |
+
"model.layers.0.self_attn.v_proj.bias": "model-00001-of-00006.safetensors",
|
26 |
+
"model.layers.0.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
|
27 |
+
"model.layers.1.input_layernorm.bias": "model-00001-of-00006.safetensors",
|
28 |
+
"model.layers.1.input_layernorm.weight": "model-00001-of-00006.safetensors",
|
29 |
+
"model.layers.1.mlp.down_proj.bias": "model-00001-of-00006.safetensors",
|
30 |
+
"model.layers.1.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
|
31 |
+
"model.layers.1.mlp.up_proj.bias": "model-00001-of-00006.safetensors",
|
32 |
+
"model.layers.1.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
|
33 |
+
"model.layers.1.post_attention_layernorm.bias": "model-00001-of-00006.safetensors",
|
34 |
+
"model.layers.1.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
|
35 |
+
"model.layers.1.post_attn_adapter.down_proj.weight": "model-00001-of-00006.safetensors",
|
36 |
+
"model.layers.1.post_attn_adapter.up_proj.weight": "model-00001-of-00006.safetensors",
|
37 |
+
"model.layers.1.post_mlp_adapter.down_proj.weight": "model-00001-of-00006.safetensors",
|
38 |
+
"model.layers.1.post_mlp_adapter.up_proj.weight": "model-00001-of-00006.safetensors",
|
39 |
+
"model.layers.1.self_attn.k_proj.bias": "model-00001-of-00006.safetensors",
|
40 |
+
"model.layers.1.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
|
41 |
+
"model.layers.1.self_attn.o_proj.bias": "model-00001-of-00006.safetensors",
|
42 |
+
"model.layers.1.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
|
43 |
+
"model.layers.1.self_attn.q_proj.bias": "model-00001-of-00006.safetensors",
|
44 |
+
"model.layers.1.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
|
45 |
+
"model.layers.1.self_attn.v_proj.bias": "model-00001-of-00006.safetensors",
|
46 |
+
"model.layers.1.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
|
47 |
+
"model.layers.10.input_layernorm.bias": "model-00003-of-00006.safetensors",
|
48 |
+
"model.layers.10.input_layernorm.weight": "model-00003-of-00006.safetensors",
|
49 |
+
"model.layers.10.mlp.down_proj.bias": "model-00003-of-00006.safetensors",
|
50 |
+
"model.layers.10.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
|
51 |
+
"model.layers.10.mlp.up_proj.bias": "model-00003-of-00006.safetensors",
|
52 |
+
"model.layers.10.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
|
53 |
+
"model.layers.10.post_attention_layernorm.bias": "model-00003-of-00006.safetensors",
|
54 |
+
"model.layers.10.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
|
55 |
+
"model.layers.10.post_attn_adapter.down_proj.weight": "model-00003-of-00006.safetensors",
|
56 |
+
"model.layers.10.post_attn_adapter.up_proj.weight": "model-00003-of-00006.safetensors",
|
57 |
+
"model.layers.10.post_mlp_adapter.down_proj.weight": "model-00003-of-00006.safetensors",
|
58 |
+
"model.layers.10.post_mlp_adapter.up_proj.weight": "model-00003-of-00006.safetensors",
|
59 |
+
"model.layers.10.self_attn.k_proj.bias": "model-00003-of-00006.safetensors",
|
60 |
+
"model.layers.10.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
|
61 |
+
"model.layers.10.self_attn.o_proj.bias": "model-00003-of-00006.safetensors",
|
62 |
+
"model.layers.10.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
|
63 |
+
"model.layers.10.self_attn.q_proj.bias": "model-00003-of-00006.safetensors",
|
64 |
+
"model.layers.10.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
|
65 |
+
"model.layers.10.self_attn.v_proj.bias": "model-00003-of-00006.safetensors",
|
66 |
+
"model.layers.10.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
|
67 |
+
"model.layers.11.input_layernorm.bias": "model-00003-of-00006.safetensors",
|
68 |
+
"model.layers.11.input_layernorm.weight": "model-00003-of-00006.safetensors",
|
69 |
+
"model.layers.11.mlp.down_proj.bias": "model-00003-of-00006.safetensors",
|
70 |
+
"model.layers.11.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
|
71 |
+
"model.layers.11.mlp.up_proj.bias": "model-00003-of-00006.safetensors",
|
72 |
+
"model.layers.11.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
|
73 |
+
"model.layers.11.post_attention_layernorm.bias": "model-00003-of-00006.safetensors",
|
74 |
+
"model.layers.11.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
|
75 |
+
"model.layers.11.post_attn_adapter.down_proj.weight": "model-00003-of-00006.safetensors",
|
76 |
+
"model.layers.11.post_attn_adapter.up_proj.weight": "model-00003-of-00006.safetensors",
|
77 |
+
"model.layers.11.post_mlp_adapter.down_proj.weight": "model-00003-of-00006.safetensors",
|
78 |
+
"model.layers.11.post_mlp_adapter.up_proj.weight": "model-00003-of-00006.safetensors",
|
79 |
+
"model.layers.11.self_attn.k_proj.bias": "model-00003-of-00006.safetensors",
|
80 |
+
"model.layers.11.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
|
81 |
+
"model.layers.11.self_attn.o_proj.bias": "model-00003-of-00006.safetensors",
|
82 |
+
"model.layers.11.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
|
83 |
+
"model.layers.11.self_attn.q_proj.bias": "model-00003-of-00006.safetensors",
|
84 |
+
"model.layers.11.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
|
85 |
+
"model.layers.11.self_attn.v_proj.bias": "model-00003-of-00006.safetensors",
|
86 |
+
"model.layers.11.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
|
87 |
+
"model.layers.12.input_layernorm.bias": "model-00004-of-00006.safetensors",
|
88 |
+
"model.layers.12.input_layernorm.weight": "model-00004-of-00006.safetensors",
|
89 |
+
"model.layers.12.mlp.down_proj.bias": "model-00004-of-00006.safetensors",
|
90 |
+
"model.layers.12.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
|
91 |
+
"model.layers.12.mlp.up_proj.bias": "model-00003-of-00006.safetensors",
|
92 |
+
"model.layers.12.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
|
93 |
+
"model.layers.12.post_attention_layernorm.bias": "model-00004-of-00006.safetensors",
|
94 |
+
"model.layers.12.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
|
95 |
+
"model.layers.12.post_attn_adapter.down_proj.weight": "model-00003-of-00006.safetensors",
|
96 |
+
"model.layers.12.post_attn_adapter.up_proj.weight": "model-00003-of-00006.safetensors",
|
97 |
+
"model.layers.12.post_mlp_adapter.down_proj.weight": "model-00003-of-00006.safetensors",
|
98 |
+
"model.layers.12.post_mlp_adapter.up_proj.weight": "model-00003-of-00006.safetensors",
|
99 |
+
"model.layers.12.self_attn.k_proj.bias": "model-00003-of-00006.safetensors",
|
100 |
+
"model.layers.12.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
|
101 |
+
"model.layers.12.self_attn.o_proj.bias": "model-00003-of-00006.safetensors",
|
102 |
+
"model.layers.12.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
|
103 |
+
"model.layers.12.self_attn.q_proj.bias": "model-00003-of-00006.safetensors",
|
104 |
+
"model.layers.12.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
|
105 |
+
"model.layers.12.self_attn.v_proj.bias": "model-00003-of-00006.safetensors",
|
106 |
+
"model.layers.12.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
|
107 |
+
"model.layers.13.input_layernorm.bias": "model-00004-of-00006.safetensors",
|
108 |
+
"model.layers.13.input_layernorm.weight": "model-00004-of-00006.safetensors",
|
109 |
+
"model.layers.13.mlp.down_proj.bias": "model-00004-of-00006.safetensors",
|
110 |
+
"model.layers.13.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
|
111 |
+
"model.layers.13.mlp.up_proj.bias": "model-00004-of-00006.safetensors",
|
112 |
+
"model.layers.13.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
|
113 |
+
"model.layers.13.post_attention_layernorm.bias": "model-00004-of-00006.safetensors",
|
114 |
+
"model.layers.13.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
|
115 |
+
"model.layers.13.post_attn_adapter.down_proj.weight": "model-00004-of-00006.safetensors",
|
116 |
+
"model.layers.13.post_attn_adapter.up_proj.weight": "model-00004-of-00006.safetensors",
|
117 |
+
"model.layers.13.post_mlp_adapter.down_proj.weight": "model-00004-of-00006.safetensors",
|
118 |
+
"model.layers.13.post_mlp_adapter.up_proj.weight": "model-00004-of-00006.safetensors",
|
119 |
+
"model.layers.13.self_attn.k_proj.bias": "model-00004-of-00006.safetensors",
|
120 |
+
"model.layers.13.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
|
121 |
+
"model.layers.13.self_attn.o_proj.bias": "model-00004-of-00006.safetensors",
|
122 |
+
"model.layers.13.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
|
123 |
+
"model.layers.13.self_attn.q_proj.bias": "model-00004-of-00006.safetensors",
|
124 |
+
"model.layers.13.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
|
125 |
+
"model.layers.13.self_attn.v_proj.bias": "model-00004-of-00006.safetensors",
|
126 |
+
"model.layers.13.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
|
127 |
+
"model.layers.14.input_layernorm.bias": "model-00004-of-00006.safetensors",
|
128 |
+
"model.layers.14.input_layernorm.weight": "model-00004-of-00006.safetensors",
|
129 |
+
"model.layers.14.mlp.down_proj.bias": "model-00004-of-00006.safetensors",
|
130 |
+
"model.layers.14.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
|
131 |
+
"model.layers.14.mlp.up_proj.bias": "model-00004-of-00006.safetensors",
|
132 |
+
"model.layers.14.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
|
133 |
+
"model.layers.14.post_attention_layernorm.bias": "model-00004-of-00006.safetensors",
|
134 |
+
"model.layers.14.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
|
135 |
+
"model.layers.14.post_attn_adapter.down_proj.weight": "model-00004-of-00006.safetensors",
|
136 |
+
"model.layers.14.post_attn_adapter.up_proj.weight": "model-00004-of-00006.safetensors",
|
137 |
+
"model.layers.14.post_mlp_adapter.down_proj.weight": "model-00004-of-00006.safetensors",
|
138 |
+
"model.layers.14.post_mlp_adapter.up_proj.weight": "model-00004-of-00006.safetensors",
|
139 |
+
"model.layers.14.self_attn.k_proj.bias": "model-00004-of-00006.safetensors",
|
140 |
+
"model.layers.14.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
|
141 |
+
"model.layers.14.self_attn.o_proj.bias": "model-00004-of-00006.safetensors",
|
142 |
+
"model.layers.14.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
|
143 |
+
"model.layers.14.self_attn.q_proj.bias": "model-00004-of-00006.safetensors",
|
144 |
+
"model.layers.14.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
|
145 |
+
"model.layers.14.self_attn.v_proj.bias": "model-00004-of-00006.safetensors",
|
146 |
+
"model.layers.14.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
|
147 |
+
"model.layers.15.input_layernorm.bias": "model-00004-of-00006.safetensors",
|
148 |
+
"model.layers.15.input_layernorm.weight": "model-00004-of-00006.safetensors",
|
149 |
+
"model.layers.15.mlp.down_proj.bias": "model-00004-of-00006.safetensors",
|
150 |
+
"model.layers.15.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
|
151 |
+
"model.layers.15.mlp.up_proj.bias": "model-00004-of-00006.safetensors",
|
152 |
+
"model.layers.15.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
|
153 |
+
"model.layers.15.post_attention_layernorm.bias": "model-00004-of-00006.safetensors",
|
154 |
+
"model.layers.15.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
|
155 |
+
"model.layers.15.post_attn_adapter.down_proj.weight": "model-00004-of-00006.safetensors",
|
156 |
+
"model.layers.15.post_attn_adapter.up_proj.weight": "model-00004-of-00006.safetensors",
|
157 |
+
"model.layers.15.post_mlp_adapter.down_proj.weight": "model-00004-of-00006.safetensors",
|
158 |
+
"model.layers.15.post_mlp_adapter.up_proj.weight": "model-00004-of-00006.safetensors",
|
159 |
+
"model.layers.15.self_attn.k_proj.bias": "model-00004-of-00006.safetensors",
|
160 |
+
"model.layers.15.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
|
161 |
+
"model.layers.15.self_attn.o_proj.bias": "model-00004-of-00006.safetensors",
|
162 |
+
"model.layers.15.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
|
163 |
+
"model.layers.15.self_attn.q_proj.bias": "model-00004-of-00006.safetensors",
|
164 |
+
"model.layers.15.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
|
165 |
+
"model.layers.15.self_attn.v_proj.bias": "model-00004-of-00006.safetensors",
|
166 |
+
"model.layers.15.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
|
167 |
+
"model.layers.16.input_layernorm.bias": "model-00004-of-00006.safetensors",
|
168 |
+
"model.layers.16.input_layernorm.weight": "model-00004-of-00006.safetensors",
|
169 |
+
"model.layers.16.mlp.down_proj.bias": "model-00004-of-00006.safetensors",
|
170 |
+
"model.layers.16.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
|
171 |
+
"model.layers.16.mlp.up_proj.bias": "model-00004-of-00006.safetensors",
|
172 |
+
"model.layers.16.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
|
173 |
+
"model.layers.16.post_attention_layernorm.bias": "model-00004-of-00006.safetensors",
|
174 |
+
"model.layers.16.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
|
175 |
+
"model.layers.16.post_attn_adapter.down_proj.weight": "model-00004-of-00006.safetensors",
|
176 |
+
"model.layers.16.post_attn_adapter.up_proj.weight": "model-00004-of-00006.safetensors",
|
177 |
+
"model.layers.16.post_mlp_adapter.down_proj.weight": "model-00004-of-00006.safetensors",
|
178 |
+
"model.layers.16.post_mlp_adapter.up_proj.weight": "model-00004-of-00006.safetensors",
|
179 |
+
"model.layers.16.self_attn.k_proj.bias": "model-00004-of-00006.safetensors",
|
180 |
+
"model.layers.16.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
|
181 |
+
"model.layers.16.self_attn.o_proj.bias": "model-00004-of-00006.safetensors",
|
182 |
+
"model.layers.16.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
|
183 |
+
"model.layers.16.self_attn.q_proj.bias": "model-00004-of-00006.safetensors",
|
184 |
+
"model.layers.16.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
|
185 |
+
"model.layers.16.self_attn.v_proj.bias": "model-00004-of-00006.safetensors",
|
186 |
+
"model.layers.16.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
|
187 |
+
"model.layers.17.input_layernorm.bias": "model-00005-of-00006.safetensors",
|
188 |
+
"model.layers.17.input_layernorm.weight": "model-00005-of-00006.safetensors",
|
189 |
+
"model.layers.17.mlp.down_proj.bias": "model-00005-of-00006.safetensors",
|
190 |
+
"model.layers.17.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
|
191 |
+
"model.layers.17.mlp.up_proj.bias": "model-00004-of-00006.safetensors",
|
192 |
+
"model.layers.17.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
|
193 |
+
"model.layers.17.post_attention_layernorm.bias": "model-00005-of-00006.safetensors",
|
194 |
+
"model.layers.17.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
|
195 |
+
"model.layers.17.post_attn_adapter.down_proj.weight": "model-00004-of-00006.safetensors",
|
196 |
+
"model.layers.17.post_attn_adapter.up_proj.weight": "model-00004-of-00006.safetensors",
|
197 |
+
"model.layers.17.post_mlp_adapter.down_proj.weight": "model-00004-of-00006.safetensors",
|
198 |
+
"model.layers.17.post_mlp_adapter.up_proj.weight": "model-00004-of-00006.safetensors",
|
199 |
+
"model.layers.17.self_attn.k_proj.bias": "model-00004-of-00006.safetensors",
|
200 |
+
"model.layers.17.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
|
201 |
+
"model.layers.17.self_attn.o_proj.bias": "model-00004-of-00006.safetensors",
|
202 |
+
"model.layers.17.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
|
203 |
+
"model.layers.17.self_attn.q_proj.bias": "model-00004-of-00006.safetensors",
|
204 |
+
"model.layers.17.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
|
205 |
+
"model.layers.17.self_attn.v_proj.bias": "model-00004-of-00006.safetensors",
|
206 |
+
"model.layers.17.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
|
207 |
+
"model.layers.18.input_layernorm.bias": "model-00005-of-00006.safetensors",
|
208 |
+
"model.layers.18.input_layernorm.weight": "model-00005-of-00006.safetensors",
|
209 |
+
"model.layers.18.mlp.down_proj.bias": "model-00005-of-00006.safetensors",
|
210 |
+
"model.layers.18.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
|
211 |
+
"model.layers.18.mlp.up_proj.bias": "model-00005-of-00006.safetensors",
|
212 |
+
"model.layers.18.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
|
213 |
+
"model.layers.18.post_attention_layernorm.bias": "model-00005-of-00006.safetensors",
|
214 |
+
"model.layers.18.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
|
215 |
+
"model.layers.18.post_attn_adapter.down_proj.weight": "model-00005-of-00006.safetensors",
|
216 |
+
"model.layers.18.post_attn_adapter.up_proj.weight": "model-00005-of-00006.safetensors",
|
217 |
+
"model.layers.18.post_mlp_adapter.down_proj.weight": "model-00005-of-00006.safetensors",
|
218 |
+
"model.layers.18.post_mlp_adapter.up_proj.weight": "model-00005-of-00006.safetensors",
|
219 |
+
"model.layers.18.self_attn.k_proj.bias": "model-00005-of-00006.safetensors",
|
220 |
+
"model.layers.18.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
|
221 |
+
"model.layers.18.self_attn.o_proj.bias": "model-00005-of-00006.safetensors",
|
222 |
+
"model.layers.18.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
|
223 |
+
"model.layers.18.self_attn.q_proj.bias": "model-00005-of-00006.safetensors",
|
224 |
+
"model.layers.18.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
|
225 |
+
"model.layers.18.self_attn.v_proj.bias": "model-00005-of-00006.safetensors",
|
226 |
+
"model.layers.18.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
|
227 |
+
"model.layers.19.input_layernorm.bias": "model-00005-of-00006.safetensors",
|
228 |
+
"model.layers.19.input_layernorm.weight": "model-00005-of-00006.safetensors",
|
229 |
+
"model.layers.19.mlp.down_proj.bias": "model-00005-of-00006.safetensors",
|
230 |
+
"model.layers.19.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
|
231 |
+
"model.layers.19.mlp.up_proj.bias": "model-00005-of-00006.safetensors",
|
232 |
+
"model.layers.19.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
|
233 |
+
"model.layers.19.post_attention_layernorm.bias": "model-00005-of-00006.safetensors",
|
234 |
+
"model.layers.19.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
|
235 |
+
"model.layers.19.post_attn_adapter.down_proj.weight": "model-00005-of-00006.safetensors",
|
236 |
+
"model.layers.19.post_attn_adapter.up_proj.weight": "model-00005-of-00006.safetensors",
|
237 |
+
"model.layers.19.post_mlp_adapter.down_proj.weight": "model-00005-of-00006.safetensors",
|
238 |
+
"model.layers.19.post_mlp_adapter.up_proj.weight": "model-00005-of-00006.safetensors",
|
239 |
+
"model.layers.19.self_attn.k_proj.bias": "model-00005-of-00006.safetensors",
|
240 |
+
"model.layers.19.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
|
241 |
+
"model.layers.19.self_attn.o_proj.bias": "model-00005-of-00006.safetensors",
|
242 |
+
"model.layers.19.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
|
243 |
+
"model.layers.19.self_attn.q_proj.bias": "model-00005-of-00006.safetensors",
|
244 |
+
"model.layers.19.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
|
245 |
+
"model.layers.19.self_attn.v_proj.bias": "model-00005-of-00006.safetensors",
|
246 |
+
"model.layers.19.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
|
247 |
+
"model.layers.2.input_layernorm.bias": "model-00002-of-00006.safetensors",
|
248 |
+
"model.layers.2.input_layernorm.weight": "model-00002-of-00006.safetensors",
|
249 |
+
"model.layers.2.mlp.down_proj.bias": "model-00002-of-00006.safetensors",
|
250 |
+
"model.layers.2.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
|
251 |
+
"model.layers.2.mlp.up_proj.bias": "model-00001-of-00006.safetensors",
|
252 |
+
"model.layers.2.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
|
253 |
+
"model.layers.2.post_attention_layernorm.bias": "model-00002-of-00006.safetensors",
|
254 |
+
"model.layers.2.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
|
255 |
+
"model.layers.2.post_attn_adapter.down_proj.weight": "model-00001-of-00006.safetensors",
|
256 |
+
"model.layers.2.post_attn_adapter.up_proj.weight": "model-00001-of-00006.safetensors",
|
257 |
+
"model.layers.2.post_mlp_adapter.down_proj.weight": "model-00001-of-00006.safetensors",
|
258 |
+
"model.layers.2.post_mlp_adapter.up_proj.weight": "model-00001-of-00006.safetensors",
|
259 |
+
"model.layers.2.self_attn.k_proj.bias": "model-00001-of-00006.safetensors",
|
260 |
+
"model.layers.2.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
|
261 |
+
"model.layers.2.self_attn.o_proj.bias": "model-00001-of-00006.safetensors",
|
262 |
+
"model.layers.2.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
|
263 |
+
"model.layers.2.self_attn.q_proj.bias": "model-00001-of-00006.safetensors",
|
264 |
+
"model.layers.2.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
|
265 |
+
"model.layers.2.self_attn.v_proj.bias": "model-00001-of-00006.safetensors",
|
266 |
+
"model.layers.2.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
|
267 |
+
"model.layers.20.input_layernorm.bias": "model-00005-of-00006.safetensors",
|
268 |
+
"model.layers.20.input_layernorm.weight": "model-00005-of-00006.safetensors",
|
269 |
+
"model.layers.20.mlp.down_proj.bias": "model-00005-of-00006.safetensors",
|
270 |
+
"model.layers.20.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
|
271 |
+
"model.layers.20.mlp.up_proj.bias": "model-00005-of-00006.safetensors",
|
272 |
+
"model.layers.20.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
|
273 |
+
"model.layers.20.post_attention_layernorm.bias": "model-00005-of-00006.safetensors",
|
274 |
+
"model.layers.20.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
|
275 |
+
"model.layers.20.post_attn_adapter.down_proj.weight": "model-00005-of-00006.safetensors",
|
276 |
+
"model.layers.20.post_attn_adapter.up_proj.weight": "model-00005-of-00006.safetensors",
|
277 |
+
"model.layers.20.post_mlp_adapter.down_proj.weight": "model-00005-of-00006.safetensors",
|
278 |
+
"model.layers.20.post_mlp_adapter.up_proj.weight": "model-00005-of-00006.safetensors",
|
279 |
+
"model.layers.20.self_attn.k_proj.bias": "model-00005-of-00006.safetensors",
|
280 |
+
"model.layers.20.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
|
281 |
+
"model.layers.20.self_attn.o_proj.bias": "model-00005-of-00006.safetensors",
|
282 |
+
"model.layers.20.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
|
283 |
+
"model.layers.20.self_attn.q_proj.bias": "model-00005-of-00006.safetensors",
|
284 |
+
"model.layers.20.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
|
285 |
+
"model.layers.20.self_attn.v_proj.bias": "model-00005-of-00006.safetensors",
|
286 |
+
"model.layers.20.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
|
287 |
+
"model.layers.21.input_layernorm.bias": "model-00005-of-00006.safetensors",
|
288 |
+
"model.layers.21.input_layernorm.weight": "model-00005-of-00006.safetensors",
|
289 |
+
"model.layers.21.mlp.down_proj.bias": "model-00005-of-00006.safetensors",
|
290 |
+
"model.layers.21.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
|
291 |
+
"model.layers.21.mlp.up_proj.bias": "model-00005-of-00006.safetensors",
|
292 |
+
"model.layers.21.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
|
293 |
+
"model.layers.21.post_attention_layernorm.bias": "model-00005-of-00006.safetensors",
|
294 |
+
"model.layers.21.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
|
295 |
+
"model.layers.21.post_attn_adapter.down_proj.weight": "model-00005-of-00006.safetensors",
|
296 |
+
"model.layers.21.post_attn_adapter.up_proj.weight": "model-00005-of-00006.safetensors",
|
297 |
+
"model.layers.21.post_mlp_adapter.down_proj.weight": "model-00005-of-00006.safetensors",
|
298 |
+
"model.layers.21.post_mlp_adapter.up_proj.weight": "model-00005-of-00006.safetensors",
|
299 |
+
"model.layers.21.self_attn.k_proj.bias": "model-00005-of-00006.safetensors",
|
300 |
+
"model.layers.21.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
|
301 |
+
"model.layers.21.self_attn.o_proj.bias": "model-00005-of-00006.safetensors",
|
302 |
+
"model.layers.21.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
|
303 |
+
"model.layers.21.self_attn.q_proj.bias": "model-00005-of-00006.safetensors",
|
304 |
+
"model.layers.21.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
|
305 |
+
"model.layers.21.self_attn.v_proj.bias": "model-00005-of-00006.safetensors",
|
306 |
+
"model.layers.21.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
|
307 |
+
"model.layers.22.input_layernorm.bias": "model-00006-of-00006.safetensors",
|
308 |
+
"model.layers.22.input_layernorm.weight": "model-00006-of-00006.safetensors",
|
309 |
+
"model.layers.22.mlp.down_proj.bias": "model-00006-of-00006.safetensors",
|
310 |
+
"model.layers.22.mlp.down_proj.weight": "model-00006-of-00006.safetensors",
|
311 |
+
"model.layers.22.mlp.up_proj.bias": "model-00005-of-00006.safetensors",
|
312 |
+
"model.layers.22.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
|
313 |
+
"model.layers.22.post_attention_layernorm.bias": "model-00006-of-00006.safetensors",
|
314 |
+
"model.layers.22.post_attention_layernorm.weight": "model-00006-of-00006.safetensors",
|
315 |
+
"model.layers.22.post_attn_adapter.down_proj.weight": "model-00005-of-00006.safetensors",
|
316 |
+
"model.layers.22.post_attn_adapter.up_proj.weight": "model-00005-of-00006.safetensors",
|
317 |
+
"model.layers.22.post_mlp_adapter.down_proj.weight": "model-00005-of-00006.safetensors",
|
318 |
+
"model.layers.22.post_mlp_adapter.up_proj.weight": "model-00005-of-00006.safetensors",
|
319 |
+
"model.layers.22.self_attn.k_proj.bias": "model-00005-of-00006.safetensors",
|
320 |
+
"model.layers.22.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
|
321 |
+
"model.layers.22.self_attn.o_proj.bias": "model-00005-of-00006.safetensors",
|
322 |
+
"model.layers.22.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
|
323 |
+
"model.layers.22.self_attn.q_proj.bias": "model-00005-of-00006.safetensors",
|
324 |
+
"model.layers.22.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
|
325 |
+
"model.layers.22.self_attn.v_proj.bias": "model-00005-of-00006.safetensors",
|
326 |
+
"model.layers.22.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
|
327 |
+
"model.layers.23.input_layernorm.bias": "model-00006-of-00006.safetensors",
|
328 |
+
"model.layers.23.input_layernorm.weight": "model-00006-of-00006.safetensors",
|
329 |
+
"model.layers.23.mlp.down_proj.bias": "model-00006-of-00006.safetensors",
|
330 |
+
"model.layers.23.mlp.down_proj.weight": "model-00006-of-00006.safetensors",
|
331 |
+
"model.layers.23.mlp.up_proj.bias": "model-00006-of-00006.safetensors",
|
332 |
+
"model.layers.23.mlp.up_proj.weight": "model-00006-of-00006.safetensors",
|
333 |
+
"model.layers.23.post_attention_layernorm.bias": "model-00006-of-00006.safetensors",
|
334 |
+
"model.layers.23.post_attention_layernorm.weight": "model-00006-of-00006.safetensors",
|
335 |
+
"model.layers.23.post_attn_adapter.down_proj.weight": "model-00006-of-00006.safetensors",
|
336 |
+
"model.layers.23.post_attn_adapter.up_proj.weight": "model-00006-of-00006.safetensors",
|
337 |
+
"model.layers.23.post_mlp_adapter.down_proj.weight": "model-00006-of-00006.safetensors",
|
338 |
+
"model.layers.23.post_mlp_adapter.up_proj.weight": "model-00006-of-00006.safetensors",
|
339 |
+
"model.layers.23.self_attn.k_proj.bias": "model-00006-of-00006.safetensors",
|
340 |
+
"model.layers.23.self_attn.k_proj.weight": "model-00006-of-00006.safetensors",
|
341 |
+
"model.layers.23.self_attn.o_proj.bias": "model-00006-of-00006.safetensors",
|
342 |
+
"model.layers.23.self_attn.o_proj.weight": "model-00006-of-00006.safetensors",
|
343 |
+
"model.layers.23.self_attn.q_proj.bias": "model-00006-of-00006.safetensors",
|
344 |
+
"model.layers.23.self_attn.q_proj.weight": "model-00006-of-00006.safetensors",
|
345 |
+
"model.layers.23.self_attn.v_proj.bias": "model-00006-of-00006.safetensors",
|
346 |
+
"model.layers.23.self_attn.v_proj.weight": "model-00006-of-00006.safetensors",
|
347 |
+
"model.layers.24.input_layernorm.bias": "model-00006-of-00006.safetensors",
|
348 |
+
"model.layers.24.input_layernorm.weight": "model-00006-of-00006.safetensors",
|
349 |
+
"model.layers.24.mlp.down_proj.bias": "model-00006-of-00006.safetensors",
|
350 |
+
"model.layers.24.mlp.down_proj.weight": "model-00006-of-00006.safetensors",
|
351 |
+
"model.layers.24.mlp.up_proj.bias": "model-00006-of-00006.safetensors",
|
352 |
+
"model.layers.24.mlp.up_proj.weight": "model-00006-of-00006.safetensors",
|
353 |
+
"model.layers.24.post_attention_layernorm.bias": "model-00006-of-00006.safetensors",
|
354 |
+
"model.layers.24.post_attention_layernorm.weight": "model-00006-of-00006.safetensors",
|
355 |
+
"model.layers.24.post_attn_adapter.down_proj.weight": "model-00006-of-00006.safetensors",
|
356 |
+
"model.layers.24.post_attn_adapter.up_proj.weight": "model-00006-of-00006.safetensors",
|
357 |
+
"model.layers.24.post_mlp_adapter.down_proj.weight": "model-00006-of-00006.safetensors",
|
358 |
+
"model.layers.24.post_mlp_adapter.up_proj.weight": "model-00006-of-00006.safetensors",
|
359 |
+
"model.layers.24.self_attn.k_proj.bias": "model-00006-of-00006.safetensors",
|
360 |
+
"model.layers.24.self_attn.k_proj.weight": "model-00006-of-00006.safetensors",
|
361 |
+
"model.layers.24.self_attn.o_proj.bias": "model-00006-of-00006.safetensors",
|
362 |
+
"model.layers.24.self_attn.o_proj.weight": "model-00006-of-00006.safetensors",
|
363 |
+
"model.layers.24.self_attn.q_proj.bias": "model-00006-of-00006.safetensors",
|
364 |
+
"model.layers.24.self_attn.q_proj.weight": "model-00006-of-00006.safetensors",
|
365 |
+
"model.layers.24.self_attn.v_proj.bias": "model-00006-of-00006.safetensors",
|
366 |
+
"model.layers.24.self_attn.v_proj.weight": "model-00006-of-00006.safetensors",
|
367 |
+
"model.layers.25.input_layernorm.bias": "model-00006-of-00006.safetensors",
|
368 |
+
"model.layers.25.input_layernorm.weight": "model-00006-of-00006.safetensors",
|
369 |
+
"model.layers.25.mlp.down_proj.bias": "model-00006-of-00006.safetensors",
|
370 |
+
"model.layers.25.mlp.down_proj.weight": "model-00006-of-00006.safetensors",
|
371 |
+
"model.layers.25.mlp.up_proj.bias": "model-00006-of-00006.safetensors",
|
372 |
+
"model.layers.25.mlp.up_proj.weight": "model-00006-of-00006.safetensors",
|
373 |
+
"model.layers.25.post_attention_layernorm.bias": "model-00006-of-00006.safetensors",
|
374 |
+
"model.layers.25.post_attention_layernorm.weight": "model-00006-of-00006.safetensors",
|
375 |
+
"model.layers.25.post_attn_adapter.down_proj.weight": "model-00006-of-00006.safetensors",
|
376 |
+
"model.layers.25.post_attn_adapter.up_proj.weight": "model-00006-of-00006.safetensors",
|
377 |
+
"model.layers.25.post_mlp_adapter.down_proj.weight": "model-00006-of-00006.safetensors",
|
378 |
+
"model.layers.25.post_mlp_adapter.up_proj.weight": "model-00006-of-00006.safetensors",
|
379 |
+
"model.layers.25.self_attn.k_proj.bias": "model-00006-of-00006.safetensors",
|
380 |
+
"model.layers.25.self_attn.k_proj.weight": "model-00006-of-00006.safetensors",
|
381 |
+
"model.layers.25.self_attn.o_proj.bias": "model-00006-of-00006.safetensors",
|
382 |
+
"model.layers.25.self_attn.o_proj.weight": "model-00006-of-00006.safetensors",
|
383 |
+
"model.layers.25.self_attn.q_proj.bias": "model-00006-of-00006.safetensors",
|
384 |
+
"model.layers.25.self_attn.q_proj.weight": "model-00006-of-00006.safetensors",
|
385 |
+
"model.layers.25.self_attn.v_proj.bias": "model-00006-of-00006.safetensors",
|
386 |
+
"model.layers.25.self_attn.v_proj.weight": "model-00006-of-00006.safetensors",
|
387 |
+
"model.layers.26.input_layernorm.bias": "model-00006-of-00006.safetensors",
|
388 |
+
"model.layers.26.input_layernorm.weight": "model-00006-of-00006.safetensors",
|
389 |
+
"model.layers.26.mlp.down_proj.bias": "model-00006-of-00006.safetensors",
|
390 |
+
"model.layers.26.mlp.down_proj.weight": "model-00006-of-00006.safetensors",
|
391 |
+
"model.layers.26.mlp.up_proj.bias": "model-00006-of-00006.safetensors",
|
392 |
+
"model.layers.26.mlp.up_proj.weight": "model-00006-of-00006.safetensors",
|
393 |
+
"model.layers.26.post_attention_layernorm.bias": "model-00006-of-00006.safetensors",
|
394 |
+
"model.layers.26.post_attention_layernorm.weight": "model-00006-of-00006.safetensors",
|
395 |
+
"model.layers.26.post_attn_adapter.down_proj.weight": "model-00006-of-00006.safetensors",
|
396 |
+
"model.layers.26.post_attn_adapter.up_proj.weight": "model-00006-of-00006.safetensors",
|
397 |
+
"model.layers.26.post_mlp_adapter.down_proj.weight": "model-00006-of-00006.safetensors",
|
398 |
+
"model.layers.26.post_mlp_adapter.up_proj.weight": "model-00006-of-00006.safetensors",
|
399 |
+
"model.layers.26.self_attn.k_proj.bias": "model-00006-of-00006.safetensors",
|
400 |
+
"model.layers.26.self_attn.k_proj.weight": "model-00006-of-00006.safetensors",
|
401 |
+
"model.layers.26.self_attn.o_proj.bias": "model-00006-of-00006.safetensors",
|
402 |
+
"model.layers.26.self_attn.o_proj.weight": "model-00006-of-00006.safetensors",
|
403 |
+
"model.layers.26.self_attn.q_proj.bias": "model-00006-of-00006.safetensors",
|
404 |
+
"model.layers.26.self_attn.q_proj.weight": "model-00006-of-00006.safetensors",
|
405 |
+
"model.layers.26.self_attn.v_proj.bias": "model-00006-of-00006.safetensors",
|
406 |
+
"model.layers.26.self_attn.v_proj.weight": "model-00006-of-00006.safetensors",
|
407 |
+
"model.layers.3.input_layernorm.bias": "model-00002-of-00006.safetensors",
|
408 |
+
"model.layers.3.input_layernorm.weight": "model-00002-of-00006.safetensors",
|
409 |
+
"model.layers.3.mlp.down_proj.bias": "model-00002-of-00006.safetensors",
|
410 |
+
"model.layers.3.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
|
411 |
+
"model.layers.3.mlp.up_proj.bias": "model-00002-of-00006.safetensors",
|
412 |
+
"model.layers.3.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
|
413 |
+
"model.layers.3.post_attention_layernorm.bias": "model-00002-of-00006.safetensors",
|
414 |
+
"model.layers.3.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
|
415 |
+
"model.layers.3.post_attn_adapter.down_proj.weight": "model-00002-of-00006.safetensors",
|
416 |
+
"model.layers.3.post_attn_adapter.up_proj.weight": "model-00002-of-00006.safetensors",
|
417 |
+
"model.layers.3.post_mlp_adapter.down_proj.weight": "model-00002-of-00006.safetensors",
|
418 |
+
"model.layers.3.post_mlp_adapter.up_proj.weight": "model-00002-of-00006.safetensors",
|
419 |
+
"model.layers.3.self_attn.k_proj.bias": "model-00002-of-00006.safetensors",
|
420 |
+
"model.layers.3.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
|
421 |
+
"model.layers.3.self_attn.o_proj.bias": "model-00002-of-00006.safetensors",
|
422 |
+
"model.layers.3.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
|
423 |
+
"model.layers.3.self_attn.q_proj.bias": "model-00002-of-00006.safetensors",
|
424 |
+
"model.layers.3.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
|
425 |
+
"model.layers.3.self_attn.v_proj.bias": "model-00002-of-00006.safetensors",
|
426 |
+
"model.layers.3.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
|
427 |
+
"model.layers.4.input_layernorm.bias": "model-00002-of-00006.safetensors",
|
428 |
+
"model.layers.4.input_layernorm.weight": "model-00002-of-00006.safetensors",
|
429 |
+
"model.layers.4.mlp.down_proj.bias": "model-00002-of-00006.safetensors",
|
430 |
+
"model.layers.4.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
|
431 |
+
"model.layers.4.mlp.up_proj.bias": "model-00002-of-00006.safetensors",
|
432 |
+
"model.layers.4.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
|
433 |
+
"model.layers.4.post_attention_layernorm.bias": "model-00002-of-00006.safetensors",
|
434 |
+
"model.layers.4.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
|
435 |
+
"model.layers.4.post_attn_adapter.down_proj.weight": "model-00002-of-00006.safetensors",
|
436 |
+
"model.layers.4.post_attn_adapter.up_proj.weight": "model-00002-of-00006.safetensors",
|
437 |
+
"model.layers.4.post_mlp_adapter.down_proj.weight": "model-00002-of-00006.safetensors",
|
438 |
+
"model.layers.4.post_mlp_adapter.up_proj.weight": "model-00002-of-00006.safetensors",
|
439 |
+
"model.layers.4.self_attn.k_proj.bias": "model-00002-of-00006.safetensors",
|
440 |
+
"model.layers.4.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
|
441 |
+
"model.layers.4.self_attn.o_proj.bias": "model-00002-of-00006.safetensors",
|
442 |
+
"model.layers.4.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
|
443 |
+
"model.layers.4.self_attn.q_proj.bias": "model-00002-of-00006.safetensors",
|
444 |
+
"model.layers.4.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
|
445 |
+
"model.layers.4.self_attn.v_proj.bias": "model-00002-of-00006.safetensors",
|
446 |
+
"model.layers.4.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
|
447 |
+
"model.layers.5.input_layernorm.bias": "model-00002-of-00006.safetensors",
|
448 |
+
"model.layers.5.input_layernorm.weight": "model-00002-of-00006.safetensors",
|
449 |
+
"model.layers.5.mlp.down_proj.bias": "model-00002-of-00006.safetensors",
|
450 |
+
"model.layers.5.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
|
451 |
+
"model.layers.5.mlp.up_proj.bias": "model-00002-of-00006.safetensors",
|
452 |
+
"model.layers.5.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
|
453 |
+
"model.layers.5.post_attention_layernorm.bias": "model-00002-of-00006.safetensors",
|
454 |
+
"model.layers.5.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
|
455 |
+
"model.layers.5.post_attn_adapter.down_proj.weight": "model-00002-of-00006.safetensors",
|
456 |
+
"model.layers.5.post_attn_adapter.up_proj.weight": "model-00002-of-00006.safetensors",
|
457 |
+
"model.layers.5.post_mlp_adapter.down_proj.weight": "model-00002-of-00006.safetensors",
|
458 |
+
"model.layers.5.post_mlp_adapter.up_proj.weight": "model-00002-of-00006.safetensors",
|
459 |
+
"model.layers.5.self_attn.k_proj.bias": "model-00002-of-00006.safetensors",
|
460 |
+
"model.layers.5.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
|
461 |
+
"model.layers.5.self_attn.o_proj.bias": "model-00002-of-00006.safetensors",
|
462 |
+
"model.layers.5.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
|
463 |
+
"model.layers.5.self_attn.q_proj.bias": "model-00002-of-00006.safetensors",
|
464 |
+
"model.layers.5.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
|
465 |
+
"model.layers.5.self_attn.v_proj.bias": "model-00002-of-00006.safetensors",
|
466 |
+
"model.layers.5.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
|
467 |
+
"model.layers.6.input_layernorm.bias": "model-00002-of-00006.safetensors",
|
468 |
+
"model.layers.6.input_layernorm.weight": "model-00002-of-00006.safetensors",
|
469 |
+
"model.layers.6.mlp.down_proj.bias": "model-00002-of-00006.safetensors",
|
470 |
+
"model.layers.6.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
|
471 |
+
"model.layers.6.mlp.up_proj.bias": "model-00002-of-00006.safetensors",
|
472 |
+
"model.layers.6.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
|
473 |
+
"model.layers.6.post_attention_layernorm.bias": "model-00002-of-00006.safetensors",
|
474 |
+
"model.layers.6.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
|
475 |
+
"model.layers.6.post_attn_adapter.down_proj.weight": "model-00002-of-00006.safetensors",
|
476 |
+
"model.layers.6.post_attn_adapter.up_proj.weight": "model-00002-of-00006.safetensors",
|
477 |
+
"model.layers.6.post_mlp_adapter.down_proj.weight": "model-00002-of-00006.safetensors",
|
478 |
+
"model.layers.6.post_mlp_adapter.up_proj.weight": "model-00002-of-00006.safetensors",
|
479 |
+
"model.layers.6.self_attn.k_proj.bias": "model-00002-of-00006.safetensors",
|
480 |
+
"model.layers.6.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
|
481 |
+
"model.layers.6.self_attn.o_proj.bias": "model-00002-of-00006.safetensors",
|
482 |
+
"model.layers.6.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
|
483 |
+
"model.layers.6.self_attn.q_proj.bias": "model-00002-of-00006.safetensors",
|
484 |
+
"model.layers.6.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
|
485 |
+
"model.layers.6.self_attn.v_proj.bias": "model-00002-of-00006.safetensors",
|
486 |
+
"model.layers.6.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
|
487 |
+
"model.layers.7.input_layernorm.bias": "model-00003-of-00006.safetensors",
|
488 |
+
"model.layers.7.input_layernorm.weight": "model-00003-of-00006.safetensors",
|
489 |
+
"model.layers.7.mlp.down_proj.bias": "model-00003-of-00006.safetensors",
|
490 |
+
"model.layers.7.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
|
491 |
+
"model.layers.7.mlp.up_proj.bias": "model-00002-of-00006.safetensors",
|
492 |
+
"model.layers.7.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
|
493 |
+
"model.layers.7.post_attention_layernorm.bias": "model-00003-of-00006.safetensors",
|
494 |
+
"model.layers.7.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
|
495 |
+
"model.layers.7.post_attn_adapter.down_proj.weight": "model-00002-of-00006.safetensors",
|
496 |
+
"model.layers.7.post_attn_adapter.up_proj.weight": "model-00002-of-00006.safetensors",
|
497 |
+
"model.layers.7.post_mlp_adapter.down_proj.weight": "model-00002-of-00006.safetensors",
|
498 |
+
"model.layers.7.post_mlp_adapter.up_proj.weight": "model-00002-of-00006.safetensors",
|
499 |
+
"model.layers.7.self_attn.k_proj.bias": "model-00002-of-00006.safetensors",
|
500 |
+
"model.layers.7.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
|
501 |
+
"model.layers.7.self_attn.o_proj.bias": "model-00002-of-00006.safetensors",
|
502 |
+
"model.layers.7.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
|
503 |
+
"model.layers.7.self_attn.q_proj.bias": "model-00002-of-00006.safetensors",
|
504 |
+
"model.layers.7.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
|
505 |
+
"model.layers.7.self_attn.v_proj.bias": "model-00002-of-00006.safetensors",
|
506 |
+
"model.layers.7.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
|
507 |
+
"model.layers.8.input_layernorm.bias": "model-00003-of-00006.safetensors",
|
508 |
+
"model.layers.8.input_layernorm.weight": "model-00003-of-00006.safetensors",
|
509 |
+
"model.layers.8.mlp.down_proj.bias": "model-00003-of-00006.safetensors",
|
510 |
+
"model.layers.8.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
|
511 |
+
"model.layers.8.mlp.up_proj.bias": "model-00003-of-00006.safetensors",
|
512 |
+
"model.layers.8.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
|
513 |
+
"model.layers.8.post_attention_layernorm.bias": "model-00003-of-00006.safetensors",
|
514 |
+
"model.layers.8.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
|
515 |
+
"model.layers.8.post_attn_adapter.down_proj.weight": "model-00003-of-00006.safetensors",
|
516 |
+
"model.layers.8.post_attn_adapter.up_proj.weight": "model-00003-of-00006.safetensors",
|
517 |
+
"model.layers.8.post_mlp_adapter.down_proj.weight": "model-00003-of-00006.safetensors",
|
518 |
+
"model.layers.8.post_mlp_adapter.up_proj.weight": "model-00003-of-00006.safetensors",
|
519 |
+
"model.layers.8.self_attn.k_proj.bias": "model-00003-of-00006.safetensors",
|
520 |
+
"model.layers.8.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
|
521 |
+
"model.layers.8.self_attn.o_proj.bias": "model-00003-of-00006.safetensors",
|
522 |
+
"model.layers.8.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
|
523 |
+
"model.layers.8.self_attn.q_proj.bias": "model-00003-of-00006.safetensors",
|
524 |
+
"model.layers.8.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
|
525 |
+
"model.layers.8.self_attn.v_proj.bias": "model-00003-of-00006.safetensors",
|
526 |
+
"model.layers.8.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
|
527 |
+
"model.layers.9.input_layernorm.bias": "model-00003-of-00006.safetensors",
|
528 |
+
"model.layers.9.input_layernorm.weight": "model-00003-of-00006.safetensors",
|
529 |
+
"model.layers.9.mlp.down_proj.bias": "model-00003-of-00006.safetensors",
|
530 |
+
"model.layers.9.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
|
531 |
+
"model.layers.9.mlp.up_proj.bias": "model-00003-of-00006.safetensors",
|
532 |
+
"model.layers.9.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
|
533 |
+
"model.layers.9.post_attention_layernorm.bias": "model-00003-of-00006.safetensors",
|
534 |
+
"model.layers.9.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
|
535 |
+
"model.layers.9.post_attn_adapter.down_proj.weight": "model-00003-of-00006.safetensors",
|
536 |
+
"model.layers.9.post_attn_adapter.up_proj.weight": "model-00003-of-00006.safetensors",
|
537 |
+
"model.layers.9.post_mlp_adapter.down_proj.weight": "model-00003-of-00006.safetensors",
|
538 |
+
"model.layers.9.post_mlp_adapter.up_proj.weight": "model-00003-of-00006.safetensors",
|
539 |
+
"model.layers.9.self_attn.k_proj.bias": "model-00003-of-00006.safetensors",
|
540 |
+
"model.layers.9.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
|
541 |
+
"model.layers.9.self_attn.o_proj.bias": "model-00003-of-00006.safetensors",
|
542 |
+
"model.layers.9.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
|
543 |
+
"model.layers.9.self_attn.q_proj.bias": "model-00003-of-00006.safetensors",
|
544 |
+
"model.layers.9.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
|
545 |
+
"model.layers.9.self_attn.v_proj.bias": "model-00003-of-00006.safetensors",
|
546 |
+
"model.layers.9.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
|
547 |
+
"model.norm.bias": "model-00006-of-00006.safetensors",
|
548 |
+
"model.norm.weight": "model-00006-of-00006.safetensors"
|
549 |
+
}
|
550 |
+
}
|
modeling_pharia.py
ADDED
@@ -0,0 +1,1008 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# we don't want to support mypy for this file for now
|
2 |
+
# type: ignore
|
3 |
+
import numpy as np
|
4 |
+
from typing import List, Optional, Tuple, Union, Dict
|
5 |
+
from tqdm import tqdm
|
6 |
+
from einops import rearrange, repeat
|
7 |
+
import torch
|
8 |
+
from torch import nn
|
9 |
+
from transformers.activations import ACT2FN
|
10 |
+
from transformers.cache_utils import Cache, DynamicCache, StaticCache
|
11 |
+
from transformers.configuration_utils import PretrainedConfig
|
12 |
+
from transformers.modeling_attn_mask_utils import AttentionMaskConverter
|
13 |
+
from transformers.modeling_outputs import (
|
14 |
+
BaseModelOutputWithPast,
|
15 |
+
)
|
16 |
+
from transformers.modeling_utils import PreTrainedModel
|
17 |
+
try:
|
18 |
+
from flash_attn.flash_attn_interface import flash_attn_func
|
19 |
+
except Exception as e:
|
20 |
+
print(
|
21 |
+
f"Could not import flash attention. "
|
22 |
+
)
|
23 |
+
flash_attn_func = None
|
24 |
+
|
25 |
+
|
26 |
+
class RotaryConfig():
|
27 |
+
def __init__(
|
28 |
+
self,
|
29 |
+
dimensions: int = 0,
|
30 |
+
base: int = 10000,
|
31 |
+
max_seq_length: int = 2048
|
32 |
+
):
|
33 |
+
self.dimensions = dimensions
|
34 |
+
self.base = base
|
35 |
+
self.max_seq_length = max_seq_length
|
36 |
+
|
37 |
+
class PhariaAdapterConfig:
|
38 |
+
def __init__(
|
39 |
+
self,
|
40 |
+
hidden_size: int,
|
41 |
+
intermediate_size: int,
|
42 |
+
mlp_bias: bool,
|
43 |
+
hidden_act: str
|
44 |
+
):
|
45 |
+
self.hidden_size = hidden_size
|
46 |
+
self.intermediate_size = intermediate_size
|
47 |
+
self.mlp_bias = mlp_bias
|
48 |
+
self.hidden_act = hidden_act
|
49 |
+
|
50 |
+
|
51 |
+
def to_dict(self):
|
52 |
+
return {
|
53 |
+
"hidden_size": self.hidden_size,
|
54 |
+
"intermediate_size": self.intermediate_size,
|
55 |
+
"mlp_bias": self.mlp_bias,
|
56 |
+
"hidden_act": self.hidden_act,
|
57 |
+
}
|
58 |
+
|
59 |
+
@classmethod
|
60 |
+
def from_dict(cls, config_dict):
|
61 |
+
return cls(**config_dict)
|
62 |
+
|
63 |
+
|
64 |
+
|
65 |
+
class PhariaConfig(PretrainedConfig):
|
66 |
+
def __init__(
|
67 |
+
self,
|
68 |
+
pad_token_id=None,
|
69 |
+
bos_token_id=1,
|
70 |
+
eos_token_id=2,
|
71 |
+
hidden_act="gelu",
|
72 |
+
hidden_size=512,
|
73 |
+
bias_name=None,
|
74 |
+
initializer_range=0.02,
|
75 |
+
intermediate_size=2048,
|
76 |
+
max_position_embeddings=8192,
|
77 |
+
model_type="pharia-v2",
|
78 |
+
num_attention_heads=4,
|
79 |
+
num_hidden_layers=4,
|
80 |
+
num_key_value_heads=2,
|
81 |
+
torch_dtype="bfloat16",
|
82 |
+
transformers_version="4.31.0.dev0",
|
83 |
+
use_cache=True,
|
84 |
+
vocab_size=128000,
|
85 |
+
mlp_bias=True,
|
86 |
+
attention_bias=True,
|
87 |
+
tie_word_embeddings=False,
|
88 |
+
attention_dropout=0.0,
|
89 |
+
causal_attention=True,
|
90 |
+
rope_theta=1000000, # rotary_embeddingbase,
|
91 |
+
rope_scaling=None,
|
92 |
+
mlp_adapter_config=None,
|
93 |
+
attn_adapter_config=None,
|
94 |
+
_attn_implementation='eager',
|
95 |
+
embedding_head_out=1024,
|
96 |
+
lora_config=None,
|
97 |
+
pooling_method=None,
|
98 |
+
layer_norm_epsilon=1e-05,
|
99 |
+
**kwargs,
|
100 |
+
):
|
101 |
+
super().__init__(
|
102 |
+
pad_token_id=pad_token_id,
|
103 |
+
bos_token_id=bos_token_id,
|
104 |
+
eos_token_id=eos_token_id,
|
105 |
+
tie_word_embeddings=tie_word_embeddings,
|
106 |
+
**kwargs,
|
107 |
+
)
|
108 |
+
|
109 |
+
self.pad_token_id = pad_token_id
|
110 |
+
self.bos_token_id = bos_token_id
|
111 |
+
self.eos_token_id = eos_token_id
|
112 |
+
self.hidden_act = hidden_act
|
113 |
+
self.hidden_size = hidden_size
|
114 |
+
self.initializer_range = initializer_range
|
115 |
+
self.intermediate_size = intermediate_size
|
116 |
+
self.max_position_embeddings = max_position_embeddings
|
117 |
+
self.model_type = model_type
|
118 |
+
self.num_attention_heads = num_attention_heads
|
119 |
+
self.num_hidden_layers = num_hidden_layers
|
120 |
+
self.num_key_value_heads = num_key_value_heads
|
121 |
+
self.torch_dtype = torch_dtype
|
122 |
+
self.causal_attention = causal_attention
|
123 |
+
self.attn_adapter_config = attn_adapter_config
|
124 |
+
self.mlp_adapter_config = mlp_adapter_config
|
125 |
+
self.bias_name = bias_name
|
126 |
+
self.transformers_version = transformers_version
|
127 |
+
self.use_cache = use_cache
|
128 |
+
self.vocab_size = vocab_size
|
129 |
+
self.mlp_bias = mlp_bias
|
130 |
+
self.attention_bias = attention_bias
|
131 |
+
self.tie_word_embeddings = tie_word_embeddings
|
132 |
+
self.attention_dropout = attention_dropout
|
133 |
+
self.rope_theta = rope_theta
|
134 |
+
self.rope_scaling = rope_scaling
|
135 |
+
self.embedding_head_out = embedding_head_out
|
136 |
+
self.pooling_method = pooling_method
|
137 |
+
self.lora_config = lora_config
|
138 |
+
self._attn_implementation = _attn_implementation
|
139 |
+
self.layer_norm_epsilon = layer_norm_epsilon
|
140 |
+
|
141 |
+
|
142 |
+
def to_dict(self):
|
143 |
+
output = super(PhariaConfig, self).to_dict()
|
144 |
+
if self.mlp_adapter_config is not None:
|
145 |
+
output["mlp_adapter_config"] = self.mlp_adapter_config.to_dict()
|
146 |
+
if self.attn_adapter_config is not None:
|
147 |
+
output["attn_adapter_config"] = self.attn_adapter_config.to_dict()
|
148 |
+
return output
|
149 |
+
|
150 |
+
@classmethod
|
151 |
+
def from_dict(cls, config_dict, **kwargs):
|
152 |
+
if 'use_cache' in config_dict:
|
153 |
+
del config_dict['use_cache']
|
154 |
+
|
155 |
+
if 'mlp_adapter_config' in config_dict and config_dict["mlp_adapter_config"] is not None:
|
156 |
+
config_dict["mlp_adapter_config"] = PhariaAdapterConfig.from_dict(config_dict["mlp_adapter_config"])
|
157 |
+
if 'attn_adapter_config' in config_dict and config_dict["attn_adapter_config"] is not None:
|
158 |
+
config_dict["attn_adapter_config"] = PhariaAdapterConfig.from_dict(config_dict["attn_adapter_config"])
|
159 |
+
return cls(**config_dict, **kwargs)
|
160 |
+
|
161 |
+
|
162 |
+
def reshape_complex_for_broadcast(freqs_cis: torch.Tensor, x: torch.Tensor) -> torch.Tensor:
|
163 |
+
ndim = x.ndim
|
164 |
+
assert 0 <= 1 < ndim
|
165 |
+
assert freqs_cis.shape[0] == x.shape[1]
|
166 |
+
assert freqs_cis.shape[1] == x.shape[-1]
|
167 |
+
shape = [d if i == 1 or i == ndim - 1 else 1 for i, d in enumerate(x.shape)]
|
168 |
+
return freqs_cis.view(*shape)
|
169 |
+
|
170 |
+
def precompute_freqs_cis(
|
171 |
+
dim: int,
|
172 |
+
end: int,
|
173 |
+
theta: float,
|
174 |
+
device: torch.device,
|
175 |
+
) -> torch.Tensor:
|
176 |
+
theta = float(theta)
|
177 |
+
freqs = 1.0 / (theta ** (torch.arange(0, dim, 2, device=device)[: (dim // 2)].float() / dim)).to(device)
|
178 |
+
t = torch.arange(end, device=device) # type: ignore
|
179 |
+
freqs = torch.outer(t, freqs).float() # type: ignore
|
180 |
+
freqs_cis = torch.polar(torch.ones_like(freqs), freqs) # complex64
|
181 |
+
return freqs_cis.to(device)
|
182 |
+
|
183 |
+
|
184 |
+
def apply_complex_rotary_emb(
|
185 |
+
xq: torch.Tensor,
|
186 |
+
xk: torch.Tensor,
|
187 |
+
freqs_cis: torch.Tensor,
|
188 |
+
query_position_ids: Optional[torch.Tensor],
|
189 |
+
key_position_ids: Optional[torch.Tensor],
|
190 |
+
) -> tuple[torch.Tensor, torch.Tensor]:
|
191 |
+
xq_complex = torch.view_as_complex(xq.float().reshape(*xq.shape[:-1], -1, 2))
|
192 |
+
xk_complex = torch.view_as_complex(xk.float().reshape(*xk.shape[:-1], -1, 2))
|
193 |
+
|
194 |
+
if query_position_ids is None:
|
195 |
+
freqs_cis_q = reshape_complex_for_broadcast(freqs_cis, xq_complex)
|
196 |
+
else:
|
197 |
+
freqs_cis_q = vector_gather_complex(freqs_cis, query_position_ids)
|
198 |
+
|
199 |
+
if key_position_ids is None:
|
200 |
+
freqs_cis_k = reshape_complex_for_broadcast(freqs_cis, xq_complex)
|
201 |
+
else:
|
202 |
+
freqs_cis_k = vector_gather_complex(freqs_cis, key_position_ids)
|
203 |
+
|
204 |
+
xq_out = torch.view_as_real(xq_complex * freqs_cis_q).flatten(3)
|
205 |
+
xk_out = torch.view_as_real(xk_complex * freqs_cis_k).flatten(3)
|
206 |
+
return xq_out.type_as(xq), xk_out.type_as(xk)
|
207 |
+
|
208 |
+
|
209 |
+
class RotaryEmbeddingComplex(torch.nn.Module):
|
210 |
+
"""
|
211 |
+
Relative rotary position embedding based on
|
212 |
+
* RoFormer: Enhanced Transformer with Rotary Position Embedding (https://arxiv.org/abs/2104.09864)
|
213 |
+
* Rotary Embeddings: A Relative Revolution (https://blog.eleuther.ai/rotary-embeddings/)
|
214 |
+
"""
|
215 |
+
|
216 |
+
def __init__(
|
217 |
+
self,
|
218 |
+
config: RotaryConfig,
|
219 |
+
device: torch.device,
|
220 |
+
) -> None:
|
221 |
+
super().__init__()
|
222 |
+
assert config.dimensions > 1, "RotaryEmbedding cannot use `dim` == 1, this results in weird reshape errors"
|
223 |
+
|
224 |
+
freqs_cis = precompute_freqs_cis(
|
225 |
+
dim=config.dimensions,
|
226 |
+
end=config.max_seq_length,
|
227 |
+
theta=config.base,
|
228 |
+
device=device,
|
229 |
+
)
|
230 |
+
|
231 |
+
# Store real and imaginary in separate buffers for correct type casting.
|
232 |
+
self.freqs_cis_real = freqs_cis.real
|
233 |
+
self.freqs_cis_imag = freqs_cis.imag
|
234 |
+
|
235 |
+
def forward(
|
236 |
+
self,
|
237 |
+
query: torch.Tensor,
|
238 |
+
key: torch.Tensor,
|
239 |
+
query_position_ids: Optional[torch.Tensor] = None,
|
240 |
+
key_position_ids: Optional[torch.Tensor] = None,
|
241 |
+
) -> tuple[torch.Tensor, torch.Tensor]:
|
242 |
+
query, key = apply_complex_rotary_emb(
|
243 |
+
xq=rearrange(query, "sq b nh hh -> b sq nh hh"),
|
244 |
+
xk=rearrange(key, "sq b nh hh -> b sq nh hh"),
|
245 |
+
freqs_cis=torch.complex(self.freqs_cis_real.float(), self.freqs_cis_imag.float()),
|
246 |
+
query_position_ids=query_position_ids,
|
247 |
+
key_position_ids=key_position_ids,
|
248 |
+
)
|
249 |
+
return rearrange(query, "b sq nh hh -> sq b nh hh"), rearrange(key, "b sq nh hh -> sq b nh hh")
|
250 |
+
|
251 |
+
def vector_gather(vectors: torch.Tensor, indices: torch.Tensor) -> torch.Tensor:
|
252 |
+
"""
|
253 |
+
Gathers (batched) vectors according to indices.
|
254 |
+
"""
|
255 |
+
vectors = repeat(vectors, "sq b nh d -> sq b B nh d", B=indices.shape[1]).squeeze(1)
|
256 |
+
indices = repeat(
|
257 |
+
indices,
|
258 |
+
"sq b -> sq b nh d",
|
259 |
+
nh=vectors.shape[-2],
|
260 |
+
d=vectors.shape[-1],
|
261 |
+
)
|
262 |
+
|
263 |
+
out = torch.gather(vectors, dim=0, index=indices)
|
264 |
+
|
265 |
+
return out
|
266 |
+
|
267 |
+
|
268 |
+
def vector_gather_complex(vectors: torch.Tensor, indices: torch.Tensor) -> torch.Tensor:
|
269 |
+
"""
|
270 |
+
Gathers (batched) vectors according to indices.
|
271 |
+
"""
|
272 |
+
vectors = repeat(vectors, "sq d -> sq B nh d", B=indices.shape[1], nh=1)
|
273 |
+
indices = repeat(
|
274 |
+
indices,
|
275 |
+
"sq b -> sq b nh d",
|
276 |
+
nh=1,
|
277 |
+
d=vectors.shape[-1],
|
278 |
+
)
|
279 |
+
|
280 |
+
out = torch.gather(vectors, dim=0, index=indices)
|
281 |
+
|
282 |
+
out = rearrange(out, "sq b nh hh -> b sq nh hh")
|
283 |
+
|
284 |
+
return out
|
285 |
+
|
286 |
+
def repeat_kv(x: torch.Tensor, n_rep: int) -> torch.Tensor:
|
287 |
+
"""torch.repeat_interleave(x, dim=2, repeats=n_rep)"""
|
288 |
+
bs, slen, n_kv_heads, head_dim = x.shape
|
289 |
+
if n_rep == 1:
|
290 |
+
return x
|
291 |
+
return (
|
292 |
+
x[:, :, :, None, :]
|
293 |
+
.expand(bs, slen, n_kv_heads, n_rep, head_dim)
|
294 |
+
.reshape(bs, slen, n_kv_heads * n_rep, head_dim)
|
295 |
+
)
|
296 |
+
|
297 |
+
|
298 |
+
|
299 |
+
class PhariaAttention(nn.Module):
|
300 |
+
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
301 |
+
|
302 |
+
def __init__(self, config: PhariaConfig, layer_idx: Optional[int] = None):
|
303 |
+
super().__init__()
|
304 |
+
self.config = config
|
305 |
+
self.layer_idx = layer_idx
|
306 |
+
self.attention_dropout = config.attention_dropout
|
307 |
+
self.hidden_size = config.hidden_size
|
308 |
+
self.num_heads = config.num_attention_heads
|
309 |
+
self.head_dim = self.hidden_size // self.num_heads
|
310 |
+
self.num_key_value_heads = config.num_key_value_heads
|
311 |
+
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
|
312 |
+
self.max_position_embeddings = config.max_position_embeddings
|
313 |
+
self.rope_theta = config.rope_theta
|
314 |
+
self.is_causal = config.causal_attention
|
315 |
+
self.query_key_scaling_factor = 1 / (self.head_dim ** 0.5)
|
316 |
+
|
317 |
+
if (self.head_dim * self.num_heads) != self.hidden_size:
|
318 |
+
raise ValueError(
|
319 |
+
f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
|
320 |
+
f" and `num_heads`: {self.num_heads})."
|
321 |
+
)
|
322 |
+
|
323 |
+
self.q_proj = nn.Linear(
|
324 |
+
self.hidden_size, self.num_heads * self.head_dim, bias=config.attention_bias
|
325 |
+
)
|
326 |
+
self.k_proj = nn.Linear(
|
327 |
+
self.hidden_size,
|
328 |
+
self.num_key_value_heads * self.head_dim,
|
329 |
+
bias=config.attention_bias,
|
330 |
+
)
|
331 |
+
self.v_proj = nn.Linear(
|
332 |
+
self.hidden_size,
|
333 |
+
self.num_key_value_heads * self.head_dim,
|
334 |
+
bias=config.attention_bias,
|
335 |
+
)
|
336 |
+
self.o_proj = nn.Linear(
|
337 |
+
self.hidden_size, self.hidden_size, bias=config.attention_bias
|
338 |
+
)
|
339 |
+
|
340 |
+
self._init_rope()
|
341 |
+
|
342 |
+
def _init_rope(self):
|
343 |
+
self.rotary_emb = RotaryEmbeddingComplex(
|
344 |
+
config=RotaryConfig(
|
345 |
+
dimensions=self.head_dim,
|
346 |
+
max_seq_length=self.max_position_embeddings,
|
347 |
+
base=self.rope_theta
|
348 |
+
),
|
349 |
+
device='cuda:0'
|
350 |
+
)
|
351 |
+
|
352 |
+
def prepare_query_key_value(
|
353 |
+
self,
|
354 |
+
hidden_states: torch.Tensor,
|
355 |
+
position_ids: torch.Tensor,
|
356 |
+
past_key_value: Optional[Cache] = None,
|
357 |
+
cache_position: Optional[torch.LongTensor] = None,
|
358 |
+
):
|
359 |
+
query_states = rearrange(self.q_proj(hidden_states), "b sq (np hn) -> sq b np hn", np=self.num_heads)
|
360 |
+
key_states = rearrange(self.k_proj(hidden_states), "b sq (np hn) -> sq b np hn", np=self.num_key_value_heads)
|
361 |
+
value_states = rearrange(self.v_proj(hidden_states), "b sq (np hn) -> sq b np hn", np=self.num_key_value_heads)
|
362 |
+
|
363 |
+
# cos, sin = self.rotary_emb(value_states, position_ids)
|
364 |
+
position_ids = rearrange(position_ids, 'b sq -> sq b')
|
365 |
+
query_states, key_states = self.rotary_emb(
|
366 |
+
query_states, key_states, query_position_ids=position_ids, key_position_ids=position_ids
|
367 |
+
)
|
368 |
+
|
369 |
+
if past_key_value is not None:
|
370 |
+
# cache_position needed for the static cache
|
371 |
+
cache_kwargs = {"cache_position": cache_position}
|
372 |
+
key_states, value_states = past_key_value.update(
|
373 |
+
key_states, value_states, self.layer_idx, cache_kwargs
|
374 |
+
)
|
375 |
+
|
376 |
+
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
377 |
+
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
378 |
+
|
379 |
+
return query_states, key_states, value_states
|
380 |
+
|
381 |
+
def forward (
|
382 |
+
self,
|
383 |
+
hidden_states: torch.Tensor,
|
384 |
+
attention_mask: Optional[torch.Tensor] = None,
|
385 |
+
position_ids: Optional[torch.LongTensor] = None,
|
386 |
+
past_key_value: Optional[Cache] = None,
|
387 |
+
output_attentions: Optional[bool] = False,
|
388 |
+
use_cache: Optional[bool] = False,
|
389 |
+
cache_position: Optional[torch.LongTensor] = None,
|
390 |
+
softmax_in_fp32: Optional[bool] = False
|
391 |
+
):
|
392 |
+
bsz, _, _ = hidden_states.size()
|
393 |
+
query, key, value = self.prepare_query_key_value(
|
394 |
+
hidden_states,
|
395 |
+
position_ids=position_ids,
|
396 |
+
past_key_value=past_key_value,
|
397 |
+
cache_position=cache_position
|
398 |
+
)
|
399 |
+
seq_length, batch_size, _, head_dim = query.shape
|
400 |
+
|
401 |
+
query = rearrange(query, "sq bs nh hd -> sq (bs nh) hd")
|
402 |
+
key = rearrange(key, "sq bs nh hd -> sq (bs nh) hd")
|
403 |
+
value = rearrange(value, "sq bs nh hd -> sq (bs nh) hd")
|
404 |
+
|
405 |
+
matmul_result = torch.empty(
|
406 |
+
query.size(1),
|
407 |
+
query.size(0),
|
408 |
+
key.size(0),
|
409 |
+
dtype=query.dtype,
|
410 |
+
device=query.device,
|
411 |
+
)
|
412 |
+
|
413 |
+
# Raw attention scores. [b * np, s_q, s_k]
|
414 |
+
matmul_result = torch.baddbmm(
|
415 |
+
matmul_result,
|
416 |
+
query.transpose(0, 1), # [b * np, s_q, hn]
|
417 |
+
key.transpose(0, 1).transpose(1, 2), # [b * np, hn, s_k]
|
418 |
+
beta=0.0,
|
419 |
+
alpha=self.query_key_scaling_factor,
|
420 |
+
)
|
421 |
+
|
422 |
+
attention_scores = rearrange(matmul_result, "(b n) s_q s_k -> b n s_q s_k", b=batch_size)
|
423 |
+
if softmax_in_fp32 and attention_scores.dtype != torch.float32:
|
424 |
+
input_dtype = attention_scores.dtype
|
425 |
+
attention_scores = attention_scores.float()
|
426 |
+
else:
|
427 |
+
input_dtype = None
|
428 |
+
|
429 |
+
|
430 |
+
causal_mask = torch.triu(
|
431 |
+
torch.ones(seq_length, seq_length, device=query.device),
|
432 |
+
diagonal=1
|
433 |
+
).bool()
|
434 |
+
|
435 |
+
attention_scores.masked_fill_(causal_mask.to(attention_scores.device), -10000.0)
|
436 |
+
probs = torch.nn.functional.softmax(attention_scores, dim=-1)
|
437 |
+
if softmax_in_fp32 and input_dtype is not None:
|
438 |
+
probs = probs.to(input_dtype)
|
439 |
+
|
440 |
+
|
441 |
+
probs = rearrange(probs, "b n s_q s_k -> (b n) s_q s_k")
|
442 |
+
hidden_state = torch.bmm(probs.to(dtype=value.dtype), value.transpose(0, 1))
|
443 |
+
attn_output = rearrange(hidden_state, "(b np) sq hn -> b sq (np hn)", b=bsz)
|
444 |
+
|
445 |
+
|
446 |
+
attn_output = nn.functional.linear(attn_output, self.o_proj.weight, None) + self.o_proj.bias
|
447 |
+
|
448 |
+
return attn_output, _, past_key_value
|
449 |
+
|
450 |
+
class PhariaFlashAttention2(PhariaAttention):
|
451 |
+
def __init__(self, *args, **kwargs):
|
452 |
+
super().__init__(*args, **kwargs)
|
453 |
+
|
454 |
+
@staticmethod
|
455 |
+
def get_max_seq_length(cumulative_seq_lengths: torch.Tensor) -> int:
|
456 |
+
return int((cumulative_seq_lengths[1:] - cumulative_seq_lengths[:-1]).max().item())
|
457 |
+
|
458 |
+
|
459 |
+
def forward(
|
460 |
+
self,
|
461 |
+
hidden_states: torch.Tensor,
|
462 |
+
attention_mask: Optional[torch.Tensor] = None,
|
463 |
+
position_ids: Optional[torch.LongTensor] = None,
|
464 |
+
past_key_value: Optional[Cache] = None,
|
465 |
+
output_attentions: Optional[bool] = False,
|
466 |
+
use_cache: Optional[bool] = False,
|
467 |
+
cache_position: Optional[torch.LongTensor] = None,
|
468 |
+
softmax_in_fp32: Optional[bool] = False
|
469 |
+
):
|
470 |
+
assert flash_attn_func is not None, "Please install Flash Attention via optimization requirements"
|
471 |
+
query, key, value = self.prepare_query_key_value(hidden_states, position_ids=position_ids)
|
472 |
+
|
473 |
+
batch_size = query.shape[1]
|
474 |
+
|
475 |
+
# reshape into format expected by flash attention [sq, b, np, hn] => [b, sq, np, hn]
|
476 |
+
query = rearrange(query, "s_q b n h -> b s_q n h")
|
477 |
+
key = rearrange(key, "s_k b n h -> b s_k n h")
|
478 |
+
value = rearrange(value, "s_k b n h -> b s_k n h")
|
479 |
+
|
480 |
+
attention_output = flash_attn_func(
|
481 |
+
q=query,
|
482 |
+
k=key,
|
483 |
+
v=value,
|
484 |
+
causal=self.is_causal,
|
485 |
+
softmax_scale=self.query_key_scaling_factor
|
486 |
+
)
|
487 |
+
attention_output = rearrange(attention_output, "b sq np hn -> b sq (np hn)", b=batch_size)
|
488 |
+
|
489 |
+
attention_output = nn.functional.linear(attention_output, self.o_proj.weight, None) + self.o_proj.bias
|
490 |
+
|
491 |
+
if not output_attentions:
|
492 |
+
attn_weights = None
|
493 |
+
|
494 |
+
return attention_output, attn_weights, past_key_value
|
495 |
+
|
496 |
+
|
497 |
+
ATTN_IMPLEMENTATION = {
|
498 |
+
'flash_attention_2': PhariaFlashAttention2,
|
499 |
+
'sdpa': PhariaAttention,
|
500 |
+
'eager': PhariaAttention
|
501 |
+
}
|
502 |
+
|
503 |
+
|
504 |
+
class PhariaMLP(nn.Module):
|
505 |
+
def __init__(self, config, layer_idx: int):
|
506 |
+
super().__init__()
|
507 |
+
self.layer_idx = layer_idx
|
508 |
+
self.config = config
|
509 |
+
self.hidden_size = config.hidden_size
|
510 |
+
self.intermediate_size = config.intermediate_size
|
511 |
+
self.up_proj = nn.Linear(
|
512 |
+
self.hidden_size, self.intermediate_size, bias=config.mlp_bias
|
513 |
+
)
|
514 |
+
self.down_proj = nn.Linear(
|
515 |
+
self.intermediate_size, self.hidden_size, bias=config.mlp_bias
|
516 |
+
)
|
517 |
+
self.act_fn = ACT2FN[config.hidden_act]
|
518 |
+
|
519 |
+
def forward(self, x):
|
520 |
+
x = self.up_proj(x)
|
521 |
+
x = self.act_fn(x)
|
522 |
+
if not self.down_proj.bias is None:
|
523 |
+
# Scaling implements this with bias being seperately added. To match numerics we change this also
|
524 |
+
o = nn.functional.linear(x, self.down_proj.weight, None) + self.down_proj.bias
|
525 |
+
else:
|
526 |
+
o = self.down_proj(x)
|
527 |
+
return o
|
528 |
+
|
529 |
+
|
530 |
+
class PhariaDecoderLayer(nn.Module):
|
531 |
+
def __init__(self, config: PhariaConfig, layer_idx: int):
|
532 |
+
super().__init__()
|
533 |
+
self.hidden_size = config.hidden_size
|
534 |
+
self.self_attn = ATTN_IMPLEMENTATION[config._attn_implementation](config=config, layer_idx=layer_idx)
|
535 |
+
|
536 |
+
self.post_mlp_adapter = None
|
537 |
+
if config.mlp_adapter_config:
|
538 |
+
self.post_mlp_adapter = PhariaMLP(config.mlp_adapter_config, layer_idx=layer_idx)
|
539 |
+
self.post_attn_adapter = None
|
540 |
+
if config.attn_adapter_config:
|
541 |
+
self.post_attn_adapter = PhariaMLP(config.attn_adapter_config, layer_idx=layer_idx)
|
542 |
+
|
543 |
+
self.mlp = PhariaMLP(config, layer_idx=layer_idx)
|
544 |
+
self.input_layernorm = nn.LayerNorm(config.hidden_size)
|
545 |
+
self.post_attention_layernorm = nn.LayerNorm(config.hidden_size)
|
546 |
+
self.layer_idx = layer_idx
|
547 |
+
|
548 |
+
def forward(
|
549 |
+
self,
|
550 |
+
hidden_states: torch.Tensor,
|
551 |
+
attention_mask: Optional[torch.Tensor] = None,
|
552 |
+
position_ids: Optional[torch.LongTensor] = None,
|
553 |
+
past_key_value: Optional[Cache] = None,
|
554 |
+
output_attentions: Optional[bool] = False,
|
555 |
+
use_cache: Optional[bool] = False,
|
556 |
+
cache_position: Optional[torch.LongTensor] = None,
|
557 |
+
) -> Tuple[
|
558 |
+
torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]
|
559 |
+
]:
|
560 |
+
residual = hidden_states
|
561 |
+
|
562 |
+
hidden_states = self.input_layernorm(hidden_states)
|
563 |
+
|
564 |
+
hidden_states, self_attn_weights, present_key_value = self.self_attn(
|
565 |
+
hidden_states=hidden_states,
|
566 |
+
attention_mask=attention_mask,
|
567 |
+
position_ids=position_ids,
|
568 |
+
past_key_value=past_key_value,
|
569 |
+
output_attentions=output_attentions,
|
570 |
+
use_cache=use_cache,
|
571 |
+
cache_position=cache_position,
|
572 |
+
)
|
573 |
+
|
574 |
+
hidden_states = residual + hidden_states
|
575 |
+
|
576 |
+
if self.post_attn_adapter:
|
577 |
+
hidden_states = self.post_attn_adapter(hidden_states) + hidden_states
|
578 |
+
|
579 |
+
residual = hidden_states
|
580 |
+
hidden_states = self.post_attention_layernorm(hidden_states)
|
581 |
+
|
582 |
+
hidden_states = self.mlp(hidden_states)
|
583 |
+
|
584 |
+
hidden_states = residual + hidden_states
|
585 |
+
if self.post_mlp_adapter:
|
586 |
+
hidden_states = self.post_mlp_adapter(hidden_states) + hidden_states
|
587 |
+
|
588 |
+
outputs = (hidden_states,)
|
589 |
+
|
590 |
+
if output_attentions:
|
591 |
+
outputs += (self_attn_weights,)
|
592 |
+
|
593 |
+
if use_cache:
|
594 |
+
outputs += (present_key_value,)
|
595 |
+
|
596 |
+
return outputs
|
597 |
+
|
598 |
+
class PhariaPreTrainedModel(PreTrainedModel):
|
599 |
+
config_class = PhariaConfig
|
600 |
+
base_model_prefix = "model"
|
601 |
+
supports_gradient_checkpointing = False
|
602 |
+
_no_split_modules = ["PhariaDecoderLayer"]
|
603 |
+
_skip_keys_device_placement = ["past_key_values"]
|
604 |
+
_supports_flash_attn_2 = True
|
605 |
+
_supports_sdpa = True
|
606 |
+
_supports_cache_class = True
|
607 |
+
_supports_static_cache = True
|
608 |
+
|
609 |
+
|
610 |
+
def _init_weights(self, module):
|
611 |
+
std = self.config.initializer_range
|
612 |
+
if isinstance(module, nn.Linear):
|
613 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
614 |
+
if module.bias is not None:
|
615 |
+
module.bias.data.zero_()
|
616 |
+
elif isinstance(module, nn.Embedding):
|
617 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
618 |
+
if module.padding_idx is not None:
|
619 |
+
module.weight.data[module.padding_idx].zero_()
|
620 |
+
|
621 |
+
|
622 |
+
class PhariaModel(PhariaPreTrainedModel):
|
623 |
+
config_class = PhariaConfig
|
624 |
+
|
625 |
+
def __init__(self, config: PhariaConfig):
|
626 |
+
super().__init__(config)
|
627 |
+
self.padding_idx = config.pad_token_id
|
628 |
+
self.vocab_size = config.vocab_size
|
629 |
+
|
630 |
+
self.embed_tokens = nn.Embedding(
|
631 |
+
config.vocab_size, config.hidden_size, self.padding_idx
|
632 |
+
)
|
633 |
+
|
634 |
+
self.layers = nn.ModuleList(
|
635 |
+
[
|
636 |
+
PhariaDecoderLayer(config, layer_idx)
|
637 |
+
for layer_idx in range(config.num_hidden_layers)
|
638 |
+
]
|
639 |
+
)
|
640 |
+
|
641 |
+
self.norm = nn.LayerNorm(config.hidden_size)
|
642 |
+
|
643 |
+
def forward(
|
644 |
+
self,
|
645 |
+
input_ids: torch.LongTensor = None,
|
646 |
+
attention_mask: Optional[torch.Tensor] = None,
|
647 |
+
position_ids: Optional[torch.LongTensor] = None,
|
648 |
+
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
|
649 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
650 |
+
use_cache: Optional[bool] = None,
|
651 |
+
output_attentions: Optional[bool] = None,
|
652 |
+
output_hidden_states: Optional[bool] = None,
|
653 |
+
return_dict: Optional[bool] = None,
|
654 |
+
cache_position: Optional[torch.LongTensor] = None,
|
655 |
+
) -> Union[Tuple, BaseModelOutputWithPast]:
|
656 |
+
output_attentions = (
|
657 |
+
output_attentions
|
658 |
+
if output_attentions is not None
|
659 |
+
else self.config.output_attentions
|
660 |
+
)
|
661 |
+
output_hidden_states = (
|
662 |
+
output_hidden_states
|
663 |
+
if output_hidden_states is not None
|
664 |
+
else self.config.output_hidden_states
|
665 |
+
)
|
666 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
667 |
+
return_dict = (
|
668 |
+
return_dict if return_dict is not None else self.config.use_return_dict
|
669 |
+
)
|
670 |
+
|
671 |
+
if (input_ids is None) ^ (inputs_embeds is not None):
|
672 |
+
raise ValueError(
|
673 |
+
"You cannot specify both input_ids and inputs_embeds at the same time, and must specify either one"
|
674 |
+
)
|
675 |
+
|
676 |
+
if inputs_embeds is None:
|
677 |
+
inputs_embeds = self.embed_tokens(input_ids)
|
678 |
+
|
679 |
+
return_legacy_cache = False
|
680 |
+
if use_cache and not isinstance(
|
681 |
+
past_key_values, Cache
|
682 |
+
): # kept for BC (non `Cache` `past_key_values` inputs)
|
683 |
+
return_legacy_cache = True
|
684 |
+
past_key_values = DynamicCache.from_legacy_cache(past_key_values)
|
685 |
+
|
686 |
+
if cache_position is None:
|
687 |
+
past_seen_tokens = (
|
688 |
+
past_key_values.get_seq_length() if past_key_values is not None else 0
|
689 |
+
)
|
690 |
+
cache_position = torch.arange(
|
691 |
+
past_seen_tokens,
|
692 |
+
past_seen_tokens + inputs_embeds.shape[1],
|
693 |
+
device=inputs_embeds.device,
|
694 |
+
)
|
695 |
+
if position_ids is None:
|
696 |
+
position_ids = cache_position.unsqueeze(0)
|
697 |
+
|
698 |
+
if self.config.causal_attention:
|
699 |
+
mask = self._update_causal_mask(
|
700 |
+
attention_mask,
|
701 |
+
inputs_embeds,
|
702 |
+
cache_position,
|
703 |
+
past_key_values,
|
704 |
+
output_attentions,
|
705 |
+
)
|
706 |
+
else:
|
707 |
+
mask = self._create_bidirectional_attention_mask(
|
708 |
+
attention_mask,
|
709 |
+
inputs_embeds.dtype
|
710 |
+
)
|
711 |
+
|
712 |
+
# embed positions
|
713 |
+
hidden_states = inputs_embeds
|
714 |
+
|
715 |
+
# decoder layers
|
716 |
+
all_hidden_states = () if output_hidden_states else None
|
717 |
+
all_self_attns = () if output_attentions else None
|
718 |
+
next_decoder_cache = None
|
719 |
+
|
720 |
+
for decoder_layer in self.layers:
|
721 |
+
if output_hidden_states:
|
722 |
+
all_hidden_states += (hidden_states,)
|
723 |
+
|
724 |
+
layer_outputs = decoder_layer(
|
725 |
+
hidden_states,
|
726 |
+
attention_mask=mask,
|
727 |
+
position_ids=position_ids,
|
728 |
+
past_key_value=past_key_values,
|
729 |
+
output_attentions=output_attentions,
|
730 |
+
use_cache=use_cache,
|
731 |
+
cache_position=cache_position,
|
732 |
+
)
|
733 |
+
|
734 |
+
hidden_states = layer_outputs[0]
|
735 |
+
|
736 |
+
if use_cache:
|
737 |
+
next_decoder_cache = layer_outputs[2 if output_attentions else 1]
|
738 |
+
|
739 |
+
if output_attentions:
|
740 |
+
all_self_attns += (layer_outputs[1],)
|
741 |
+
|
742 |
+
hidden_states = self.norm(hidden_states)
|
743 |
+
|
744 |
+
# add hidden states from the last decoder layer
|
745 |
+
if output_hidden_states:
|
746 |
+
all_hidden_states += (hidden_states,)
|
747 |
+
|
748 |
+
next_cache = next_decoder_cache if use_cache else None
|
749 |
+
if return_legacy_cache:
|
750 |
+
next_cache = next_cache.to_legacy_cache()
|
751 |
+
|
752 |
+
if not return_dict:
|
753 |
+
return tuple(
|
754 |
+
v
|
755 |
+
for v in [hidden_states, next_cache, all_hidden_states, all_self_attns]
|
756 |
+
if v is not None
|
757 |
+
)
|
758 |
+
return BaseModelOutputWithPast(
|
759 |
+
last_hidden_state=hidden_states,
|
760 |
+
past_key_values=next_cache,
|
761 |
+
hidden_states=all_hidden_states,
|
762 |
+
attentions=all_self_attns,
|
763 |
+
)
|
764 |
+
|
765 |
+
def _create_bidirectional_attention_mask(self, attention_mask: torch.Tensor, dtype: torch.dtype) -> torch.Tensor:
|
766 |
+
bidirectional_mask = attention_mask.unsqueeze(1) * attention_mask.unsqueeze(2).to(dtype)
|
767 |
+
bidirectional_mask = 1 - bidirectional_mask # flip
|
768 |
+
dtype_min_value = torch.finfo(dtype).min
|
769 |
+
attention_mask = bidirectional_mask.masked_fill(bidirectional_mask == 1, dtype_min_value)
|
770 |
+
|
771 |
+
return attention_mask
|
772 |
+
|
773 |
+
|
774 |
+
def _update_causal_mask(
|
775 |
+
self,
|
776 |
+
attention_mask: torch.Tensor,
|
777 |
+
input_tensor: torch.Tensor,
|
778 |
+
cache_position: torch.Tensor,
|
779 |
+
past_key_values: Cache,
|
780 |
+
output_attentions: bool,
|
781 |
+
):
|
782 |
+
# TODO: As of torch==2.2.0, the `attention_mask` passed to the model in `generate` is 2D and of dynamic length even when the static
|
783 |
+
# KV cache is used. This is an issue for torch.compile which then recaptures cudagraphs at each decode steps due to the dynamic shapes.
|
784 |
+
# (`recording cudagraph tree for symint key 13`, etc.), which is VERY slow. A workaround is `@torch.compiler.disable`, but this prevents using
|
785 |
+
# `fullgraph=True`. See more context in https://github.com/huggingface/transformers/pull/29114
|
786 |
+
|
787 |
+
if self.config._attn_implementation == "flash_attention_2":
|
788 |
+
if attention_mask is not None and 0.0 in attention_mask:
|
789 |
+
return attention_mask
|
790 |
+
return None
|
791 |
+
|
792 |
+
# For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in
|
793 |
+
# order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail
|
794 |
+
# to infer the attention mask.
|
795 |
+
past_seen_tokens = (
|
796 |
+
past_key_values.get_seq_length() if past_key_values is not None else 0
|
797 |
+
)
|
798 |
+
using_static_cache = isinstance(past_key_values, StaticCache)
|
799 |
+
|
800 |
+
# When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward
|
801 |
+
if (
|
802 |
+
self.config._attn_implementation == "sdpa"
|
803 |
+
and not using_static_cache
|
804 |
+
and not output_attentions
|
805 |
+
):
|
806 |
+
if AttentionMaskConverter._ignore_causal_mask_sdpa(
|
807 |
+
attention_mask,
|
808 |
+
inputs_embeds=input_tensor,
|
809 |
+
past_key_values_length=past_seen_tokens,
|
810 |
+
is_training=self.training,
|
811 |
+
):
|
812 |
+
return None
|
813 |
+
|
814 |
+
dtype, device = input_tensor.dtype, input_tensor.device
|
815 |
+
min_dtype = torch.finfo(dtype).min
|
816 |
+
sequence_length = input_tensor.shape[1]
|
817 |
+
if using_static_cache:
|
818 |
+
target_length = past_key_values.get_max_length()
|
819 |
+
else:
|
820 |
+
target_length = (
|
821 |
+
attention_mask.shape[-1]
|
822 |
+
if isinstance(attention_mask, torch.Tensor)
|
823 |
+
else past_seen_tokens + sequence_length + 1
|
824 |
+
)
|
825 |
+
|
826 |
+
if attention_mask is not None and attention_mask.dim() == 4:
|
827 |
+
# in this case we assume that the mask comes already in inverted form and requires no inversion or slicing
|
828 |
+
if attention_mask.max() != 0:
|
829 |
+
raise ValueError(
|
830 |
+
"Custom 4D attention mask should be passed in inverted form with max==0`"
|
831 |
+
)
|
832 |
+
causal_mask = attention_mask
|
833 |
+
else:
|
834 |
+
causal_mask = torch.full(
|
835 |
+
(sequence_length, target_length),
|
836 |
+
fill_value=min_dtype,
|
837 |
+
dtype=dtype,
|
838 |
+
device=device,
|
839 |
+
)
|
840 |
+
if sequence_length != 1:
|
841 |
+
causal_mask = torch.triu(causal_mask, diagonal=1)
|
842 |
+
causal_mask *= torch.arange(
|
843 |
+
target_length, device=device
|
844 |
+
) > cache_position.reshape(-1, 1)
|
845 |
+
causal_mask = causal_mask[None, None, :, :].expand(
|
846 |
+
input_tensor.shape[0], 1, -1, -1
|
847 |
+
)
|
848 |
+
if attention_mask is not None:
|
849 |
+
causal_mask = (
|
850 |
+
causal_mask.clone()
|
851 |
+
) # copy to contiguous memory for in-place edit
|
852 |
+
mask_length = attention_mask.shape[-1]
|
853 |
+
padding_mask = (
|
854 |
+
causal_mask[:, :, :, :mask_length]
|
855 |
+
+ attention_mask[:, None, None, :]
|
856 |
+
)
|
857 |
+
padding_mask = padding_mask == 0
|
858 |
+
causal_mask[:, :, :, :mask_length] = causal_mask[
|
859 |
+
:, :, :, :mask_length
|
860 |
+
].masked_fill(padding_mask, min_dtype)
|
861 |
+
if (
|
862 |
+
self.config._attn_implementation == "sdpa"
|
863 |
+
and attention_mask is not None
|
864 |
+
and attention_mask.device.type == "cuda"
|
865 |
+
and not output_attentions
|
866 |
+
):
|
867 |
+
# Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when
|
868 |
+
# using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
|
869 |
+
# Details: https://github.com/pytorch/pytorch/issues/110213
|
870 |
+
causal_mask = AttentionMaskConverter._unmask_unattended(
|
871 |
+
causal_mask, min_dtype
|
872 |
+
)
|
873 |
+
|
874 |
+
return causal_mask
|
875 |
+
|
876 |
+
class Embeddinghead(torch.nn.Module):
|
877 |
+
def __init__(
|
878 |
+
self,
|
879 |
+
pooling_method: str
|
880 |
+
):
|
881 |
+
super().__init__()
|
882 |
+
self.pooling_method = pooling_method
|
883 |
+
|
884 |
+
def forward(self, hidden_state: torch.Tensor, attention_mask: torch.Tensor = None) -> torch.Tensor:
|
885 |
+
"""
|
886 |
+
Args:
|
887 |
+
hidden_state: [b, n, d]
|
888 |
+
attention_mask: [b, n]
|
889 |
+
"""
|
890 |
+
hidden_state = hidden_state.to(attention_mask.device)
|
891 |
+
if self.pooling_method == 'cls':
|
892 |
+
embedding = hidden_state[:, 0]
|
893 |
+
elif self.pooling_method == 'lasttoken':
|
894 |
+
b, n, d = hidden_state.size()
|
895 |
+
|
896 |
+
reversed_mask = torch.flip(attention_mask, dims=(1,))
|
897 |
+
argmax_reverse = torch.argmax(reversed_mask, dim=1, keepdim=False)
|
898 |
+
|
899 |
+
gather_indices = attention_mask.size(1) - argmax_reverse - 1
|
900 |
+
gather_indices = torch.clamp(gather_indices, min=0)
|
901 |
+
gather_indices = gather_indices.unsqueeze(-1).repeat(1, d)
|
902 |
+
gather_indices = gather_indices.unsqueeze(1)
|
903 |
+
assert gather_indices.shape == (b, 1, d)
|
904 |
+
|
905 |
+
input_mask_expanded = attention_mask.unsqueeze(-1).expand((b, n, d)).float()
|
906 |
+
embedding = torch.gather(hidden_state * input_mask_expanded, 1, gather_indices).squeeze(dim=1)
|
907 |
+
|
908 |
+
elif self.pooling_method in ['mean', 'weighted_mean']:
|
909 |
+
if self.pooling_method == 'weighted_mean':
|
910 |
+
attention_mask *= attention_mask.cumsum(dim=1)
|
911 |
+
s = torch.sum(hidden_state * attention_mask.unsqueeze(-1).float(), dim=1)
|
912 |
+
d = attention_mask.sum(dim=1, keepdim=True).float()
|
913 |
+
embedding = s / d
|
914 |
+
else: raise NotImplementedError(f"Unknown pooling method: {self.pooling_method}")
|
915 |
+
|
916 |
+
return embedding
|
917 |
+
|
918 |
+
|
919 |
+
|
920 |
+
class PhariaForEmbedding(PhariaPreTrainedModel):
|
921 |
+
def __init__(self, config, tokenizer):
|
922 |
+
super().__init__(config)
|
923 |
+
self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2"
|
924 |
+
self._use_sdpa = config._attn_implementation == "sdpa"
|
925 |
+
self.model = PhariaModel(config)
|
926 |
+
self.tokenizer = tokenizer
|
927 |
+
self.tokenizer.pad_token_id = 1
|
928 |
+
|
929 |
+
self.embedding_head = Embeddinghead(pooling_method=self.config.pooling_method)
|
930 |
+
|
931 |
+
def encode_queries(self, queries: Union[List[str], str], **kwargs) -> np.ndarray:
|
932 |
+
"""Used for encoding the queries of retrieval or reranking tasks"""
|
933 |
+
return self.encode(queries, **kwargs)
|
934 |
+
|
935 |
+
def encode_corpus(self, corpus: Union[List[str], str, List[Dict[str, str]]], **kwargs) -> np.ndarray:
|
936 |
+
"""Used for encoding the corpus of retrieval tasks"""
|
937 |
+
if isinstance(corpus, dict):
|
938 |
+
corpus = [corpus]
|
939 |
+
if isinstance(corpus, list) and isinstance(corpus[0], dict):
|
940 |
+
corpus = [
|
941 |
+
doc["text"] for doc in corpus
|
942 |
+
]
|
943 |
+
return self.encode(corpus, **kwargs)
|
944 |
+
|
945 |
+
@torch.no_grad()
|
946 |
+
def encode(
|
947 |
+
self,
|
948 |
+
sentences: Union[List[str], str],
|
949 |
+
batch_size: int = 256,
|
950 |
+
max_length: int = 512,
|
951 |
+
instruction: str = "",
|
952 |
+
user_token: str = "<|start_header_id|>user<|end_header_id|>",
|
953 |
+
embed_instruction: bool = False,
|
954 |
+
embed_eos_token: str = "\n<|embed|>\n",
|
955 |
+
convert_to_tensor: bool = False,
|
956 |
+
add_special_tokens: bool = True,
|
957 |
+
**kwargs,
|
958 |
+
) -> np.ndarray:
|
959 |
+
|
960 |
+
input_was_string = False
|
961 |
+
if isinstance(sentences, str):
|
962 |
+
sentences = [sentences]
|
963 |
+
input_was_string = True
|
964 |
+
|
965 |
+
all_embeddings, all_kv_caches = [], []
|
966 |
+
for start_index in tqdm(range(0, len(sentences), batch_size), desc="Batches", disable=len(sentences)<256):
|
967 |
+
sentences_batch = [
|
968 |
+
user_token + instruction + embed_eos_token + s for s in sentences[start_index:start_index + batch_size]
|
969 |
+
]
|
970 |
+
# This will prepend the bos token if the tokenizer has `add_bos_token=True`
|
971 |
+
inputs = self.tokenizer(
|
972 |
+
sentences_batch,
|
973 |
+
padding=True,
|
974 |
+
truncation=True,
|
975 |
+
return_tensors='pt',
|
976 |
+
max_length=max_length,
|
977 |
+
add_special_tokens=add_special_tokens,
|
978 |
+
).to(self.device)
|
979 |
+
|
980 |
+
last_hidden_state = self.model(inputs['input_ids'])['last_hidden_state']
|
981 |
+
|
982 |
+
if ("mean" in self.embedding_head.pooling_method) and not embed_instruction:
|
983 |
+
instruct_with_special_tokens = user_token + instruction + embed_eos_token
|
984 |
+
# Remove instruction tokens from the embeddings by masking them
|
985 |
+
instruction_tokens = self.tokenizer(
|
986 |
+
instruct_with_special_tokens,
|
987 |
+
padding=False,
|
988 |
+
truncation=True,
|
989 |
+
max_length=max_length,
|
990 |
+
add_special_tokens=add_special_tokens,
|
991 |
+
)["input_ids"]
|
992 |
+
inputs['attention_mask'][:, :len(instruction_tokens)] = 0
|
993 |
+
|
994 |
+
embeddings = self.embedding_head(last_hidden_state, inputs['attention_mask'])
|
995 |
+
|
996 |
+
if convert_to_tensor:
|
997 |
+
all_embeddings.append(embeddings)
|
998 |
+
else:
|
999 |
+
# NumPy does not support bfloat16
|
1000 |
+
all_embeddings.append(embeddings.cpu().to(torch.float32).numpy())
|
1001 |
+
|
1002 |
+
all_embeddings = (
|
1003 |
+
torch.cat(all_embeddings, dim=0) if convert_to_tensor else np.concatenate(all_embeddings, axis=0)
|
1004 |
+
)
|
1005 |
+
if input_was_string:
|
1006 |
+
all_embeddings = all_embeddings[0]
|
1007 |
+
|
1008 |
+
return all_embeddings
|
special_tokens_map.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|