zyznull commited on
Commit
189f3a2
1 Parent(s): 110d928

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +3644 -0
README.md CHANGED
@@ -12,6 +12,3650 @@ tags:
12
  - Qwen2-VL
13
  - sentence-similarity
14
  - vidore
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
15
  ---
16
 
17
  <p align="center">
 
12
  - Qwen2-VL
13
  - sentence-similarity
14
  - vidore
15
+ model-index:
16
+ - name: gme-Qwen2-VL-7B-Instruct
17
+ results:
18
+ - task:
19
+ type: STS
20
+ dataset:
21
+ type: C-MTEB/AFQMC
22
+ name: MTEB AFQMC
23
+ config: default
24
+ split: validation
25
+ revision: b44c3b011063adb25877c13823db83bb193913c4
26
+ metrics:
27
+ - type: cos_sim_pearson
28
+ value: 64.72351048394194
29
+ - type: cos_sim_spearman
30
+ value: 71.66842612591344
31
+ - type: euclidean_pearson
32
+ value: 70.0342809043895
33
+ - type: euclidean_spearman
34
+ value: 71.66842612323917
35
+ - type: manhattan_pearson
36
+ value: 69.94743870947117
37
+ - type: manhattan_spearman
38
+ value: 71.53159630946965
39
+ - task:
40
+ type: STS
41
+ dataset:
42
+ type: C-MTEB/ATEC
43
+ name: MTEB ATEC
44
+ config: default
45
+ split: test
46
+ revision: 0f319b1142f28d00e055a6770f3f726ae9b7d865
47
+ metrics:
48
+ - type: cos_sim_pearson
49
+ value: 52.38188106868689
50
+ - type: cos_sim_spearman
51
+ value: 55.468235529709766
52
+ - type: euclidean_pearson
53
+ value: 56.974786979175086
54
+ - type: euclidean_spearman
55
+ value: 55.468231026153745
56
+ - type: manhattan_pearson
57
+ value: 56.94467132566259
58
+ - type: manhattan_spearman
59
+ value: 55.39037386224014
60
+ - task:
61
+ type: Classification
62
+ dataset:
63
+ type: mteb/amazon_counterfactual
64
+ name: MTEB AmazonCounterfactualClassification (en)
65
+ config: en
66
+ split: test
67
+ revision: e8379541af4e31359cca9fbcf4b00f2671dba205
68
+ metrics:
69
+ - type: accuracy
70
+ value: 77.61194029850746
71
+ - type: ap
72
+ value: 41.29789064067677
73
+ - type: f1
74
+ value: 71.69633278678522
75
+ - task:
76
+ type: Classification
77
+ dataset:
78
+ type: mteb/amazon_polarity
79
+ name: MTEB AmazonPolarityClassification
80
+ config: default
81
+ split: test
82
+ revision: e2d317d38cd51312af73b3d32a06d1a08b442046
83
+ metrics:
84
+ - type: accuracy
85
+ value: 97.3258
86
+ - type: ap
87
+ value: 95.91845683387056
88
+ - type: f1
89
+ value: 97.32526074864263
90
+ - task:
91
+ type: Classification
92
+ dataset:
93
+ type: mteb/amazon_reviews_multi
94
+ name: MTEB AmazonReviewsClassification (en)
95
+ config: en
96
+ split: test
97
+ revision: 1399c76144fd37290681b995c656ef9b2e06e26d
98
+ metrics:
99
+ - type: accuracy
100
+ value: 64.794
101
+ - type: f1
102
+ value: 63.7329780206882
103
+ - task:
104
+ type: Classification
105
+ dataset:
106
+ type: mteb/amazon_reviews_multi
107
+ name: MTEB AmazonReviewsClassification (zh)
108
+ config: zh
109
+ split: test
110
+ revision: 1399c76144fd37290681b995c656ef9b2e06e26d
111
+ metrics:
112
+ - type: accuracy
113
+ value: 55.099999999999994
114
+ - type: f1
115
+ value: 53.115528412999666
116
+ - task:
117
+ type: Retrieval
118
+ dataset:
119
+ type: mteb/arguana
120
+ name: MTEB ArguAna
121
+ config: default
122
+ split: test
123
+ revision: c22ab2a51041ffd869aaddef7af8d8215647e41a
124
+ metrics:
125
+ - type: map_at_1
126
+ value: 40.541
127
+ - type: map_at_10
128
+ value: 56.315000000000005
129
+ - type: map_at_100
130
+ value: 56.824
131
+ - type: map_at_1000
132
+ value: 56.825
133
+ - type: map_at_3
134
+ value: 51.778
135
+ - type: map_at_5
136
+ value: 54.623
137
+ - type: mrr_at_1
138
+ value: 41.038000000000004
139
+ - type: mrr_at_10
140
+ value: 56.532000000000004
141
+ - type: mrr_at_100
142
+ value: 57.034
143
+ - type: mrr_at_1000
144
+ value: 57.034
145
+ - type: mrr_at_3
146
+ value: 52.015
147
+ - type: mrr_at_5
148
+ value: 54.835
149
+ - type: ndcg_at_1
150
+ value: 40.541
151
+ - type: ndcg_at_10
152
+ value: 64.596
153
+ - type: ndcg_at_100
154
+ value: 66.656
155
+ - type: ndcg_at_1000
156
+ value: 66.666
157
+ - type: ndcg_at_3
158
+ value: 55.415000000000006
159
+ - type: ndcg_at_5
160
+ value: 60.527
161
+ - type: precision_at_1
162
+ value: 40.541
163
+ - type: precision_at_10
164
+ value: 9.083
165
+ - type: precision_at_100
166
+ value: 0.996
167
+ - type: precision_at_1000
168
+ value: 0.1
169
+ - type: precision_at_3
170
+ value: 21.977
171
+ - type: precision_at_5
172
+ value: 15.661
173
+ - type: recall_at_1
174
+ value: 40.541
175
+ - type: recall_at_10
176
+ value: 90.825
177
+ - type: recall_at_100
178
+ value: 99.57300000000001
179
+ - type: recall_at_1000
180
+ value: 99.644
181
+ - type: recall_at_3
182
+ value: 65.932
183
+ - type: recall_at_5
184
+ value: 78.307
185
+ - task:
186
+ type: Clustering
187
+ dataset:
188
+ type: mteb/arxiv-clustering-p2p
189
+ name: MTEB ArxivClusteringP2P
190
+ config: default
191
+ split: test
192
+ revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d
193
+ metrics:
194
+ - type: v_measure
195
+ value: 54.96111428218386
196
+ - task:
197
+ type: Clustering
198
+ dataset:
199
+ type: mteb/arxiv-clustering-s2s
200
+ name: MTEB ArxivClusteringS2S
201
+ config: default
202
+ split: test
203
+ revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53
204
+ metrics:
205
+ - type: v_measure
206
+ value: 50.637711388838945
207
+ - task:
208
+ type: Reranking
209
+ dataset:
210
+ type: mteb/askubuntudupquestions-reranking
211
+ name: MTEB AskUbuntuDupQuestions
212
+ config: default
213
+ split: test
214
+ revision: 2000358ca161889fa9c082cb41daa8dcfb161a54
215
+ metrics:
216
+ - type: map
217
+ value: 64.0741897266483
218
+ - type: mrr
219
+ value: 76.11440882909028
220
+ - task:
221
+ type: STS
222
+ dataset:
223
+ type: mteb/biosses-sts
224
+ name: MTEB BIOSSES
225
+ config: default
226
+ split: test
227
+ revision: d3fb88f8f02e40887cd149695127462bbcf29b4a
228
+ metrics:
229
+ - type: cos_sim_pearson
230
+ value: 86.2557839280406
231
+ - type: cos_sim_spearman
232
+ value: 82.58200216886888
233
+ - type: euclidean_pearson
234
+ value: 84.80588838508498
235
+ - type: euclidean_spearman
236
+ value: 82.58200216886888
237
+ - type: manhattan_pearson
238
+ value: 84.53082035185592
239
+ - type: manhattan_spearman
240
+ value: 82.4964580510134
241
+ - task:
242
+ type: STS
243
+ dataset:
244
+ type: C-MTEB/BQ
245
+ name: MTEB BQ
246
+ config: default
247
+ split: test
248
+ revision: e3dda5e115e487b39ec7e618c0c6a29137052a55
249
+ metrics:
250
+ - type: cos_sim_pearson
251
+ value: 76.98420285210636
252
+ - type: cos_sim_spearman
253
+ value: 78.95549489000658
254
+ - type: euclidean_pearson
255
+ value: 79.14591532018991
256
+ - type: euclidean_spearman
257
+ value: 78.95549488953284
258
+ - type: manhattan_pearson
259
+ value: 79.26212116856509
260
+ - type: manhattan_spearman
261
+ value: 79.02104262086006
262
+ - task:
263
+ type: Classification
264
+ dataset:
265
+ type: mteb/banking77
266
+ name: MTEB Banking77Classification
267
+ config: default
268
+ split: test
269
+ revision: 0fd18e25b25c072e09e0d92ab615fda904d66300
270
+ metrics:
271
+ - type: accuracy
272
+ value: 84.76298701298703
273
+ - type: f1
274
+ value: 84.24881789367576
275
+ - task:
276
+ type: Clustering
277
+ dataset:
278
+ type: mteb/biorxiv-clustering-p2p
279
+ name: MTEB BiorxivClusteringP2P
280
+ config: default
281
+ split: test
282
+ revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40
283
+ metrics:
284
+ - type: v_measure
285
+ value: 46.86757924102047
286
+ - task:
287
+ type: Clustering
288
+ dataset:
289
+ type: mteb/biorxiv-clustering-s2s
290
+ name: MTEB BiorxivClusteringS2S
291
+ config: default
292
+ split: test
293
+ revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908
294
+ metrics:
295
+ - type: v_measure
296
+ value: 43.86043680479362
297
+ - task:
298
+ type: Clustering
299
+ dataset:
300
+ type: C-MTEB/CLSClusteringP2P
301
+ name: MTEB CLSClusteringP2P
302
+ config: default
303
+ split: test
304
+ revision: 4b6227591c6c1a73bc76b1055f3b7f3588e72476
305
+ metrics:
306
+ - type: v_measure
307
+ value: 45.684222588040605
308
+ - task:
309
+ type: Clustering
310
+ dataset:
311
+ type: C-MTEB/CLSClusteringS2S
312
+ name: MTEB CLSClusteringS2S
313
+ config: default
314
+ split: test
315
+ revision: e458b3f5414b62b7f9f83499ac1f5497ae2e869f
316
+ metrics:
317
+ - type: v_measure
318
+ value: 45.45639765303432
319
+ - task:
320
+ type: Reranking
321
+ dataset:
322
+ type: C-MTEB/CMedQAv1-reranking
323
+ name: MTEB CMedQAv1
324
+ config: default
325
+ split: test
326
+ revision: 8d7f1e942507dac42dc58017c1a001c3717da7df
327
+ metrics:
328
+ - type: map
329
+ value: 88.7058672660788
330
+ - type: mrr
331
+ value: 90.5795634920635
332
+ - task:
333
+ type: Reranking
334
+ dataset:
335
+ type: C-MTEB/CMedQAv2-reranking
336
+ name: MTEB CMedQAv2
337
+ config: default
338
+ split: test
339
+ revision: 23d186750531a14a0357ca22cd92d712fd512ea0
340
+ metrics:
341
+ - type: map
342
+ value: 90.50750030424048
343
+ - type: mrr
344
+ value: 92.3970634920635
345
+ - task:
346
+ type: Retrieval
347
+ dataset:
348
+ type: BeIR/cqadupstack
349
+ name: MTEB CQADupstackAndroidRetrieval
350
+ config: default
351
+ split: test
352
+ revision: f46a197baaae43b4f621051089b82a364682dfeb
353
+ metrics:
354
+ - type: map_at_1
355
+ value: 28.848000000000003
356
+ - type: map_at_10
357
+ value: 40.453
358
+ - type: map_at_100
359
+ value: 42.065000000000005
360
+ - type: map_at_1000
361
+ value: 42.176
362
+ - type: map_at_3
363
+ value: 36.697
364
+ - type: map_at_5
365
+ value: 38.855000000000004
366
+ - type: mrr_at_1
367
+ value: 34.764
368
+ - type: mrr_at_10
369
+ value: 45.662000000000006
370
+ - type: mrr_at_100
371
+ value: 46.56
372
+ - type: mrr_at_1000
373
+ value: 46.597
374
+ - type: mrr_at_3
375
+ value: 42.632
376
+ - type: mrr_at_5
377
+ value: 44.249
378
+ - type: ndcg_at_1
379
+ value: 34.764
380
+ - type: ndcg_at_10
381
+ value: 47.033
382
+ - type: ndcg_at_100
383
+ value: 53.089
384
+ - type: ndcg_at_1000
385
+ value: 54.818
386
+ - type: ndcg_at_3
387
+ value: 41.142
388
+ - type: ndcg_at_5
389
+ value: 43.928
390
+ - type: precision_at_1
391
+ value: 34.764
392
+ - type: precision_at_10
393
+ value: 9.027000000000001
394
+ - type: precision_at_100
395
+ value: 1.465
396
+ - type: precision_at_1000
397
+ value: 0.192
398
+ - type: precision_at_3
399
+ value: 19.695
400
+ - type: precision_at_5
401
+ value: 14.535
402
+ - type: recall_at_1
403
+ value: 28.848000000000003
404
+ - type: recall_at_10
405
+ value: 60.849
406
+ - type: recall_at_100
407
+ value: 85.764
408
+ - type: recall_at_1000
409
+ value: 96.098
410
+ - type: recall_at_3
411
+ value: 44.579
412
+ - type: recall_at_5
413
+ value: 51.678999999999995
414
+ - task:
415
+ type: Retrieval
416
+ dataset:
417
+ type: BeIR/cqadupstack
418
+ name: MTEB CQADupstackEnglishRetrieval
419
+ config: default
420
+ split: test
421
+ revision: ad9991cb51e31e31e430383c75ffb2885547b5f0
422
+ metrics:
423
+ - type: map_at_1
424
+ value: 30.731
425
+ - type: map_at_10
426
+ value: 41.859
427
+ - type: map_at_100
428
+ value: 43.13
429
+ - type: map_at_1000
430
+ value: 43.257
431
+ - type: map_at_3
432
+ value: 38.384
433
+ - type: map_at_5
434
+ value: 40.284
435
+ - type: mrr_at_1
436
+ value: 38.471
437
+ - type: mrr_at_10
438
+ value: 47.531
439
+ - type: mrr_at_100
440
+ value: 48.199
441
+ - type: mrr_at_1000
442
+ value: 48.24
443
+ - type: mrr_at_3
444
+ value: 44.989000000000004
445
+ - type: mrr_at_5
446
+ value: 46.403
447
+ - type: ndcg_at_1
448
+ value: 38.471
449
+ - type: ndcg_at_10
450
+ value: 48.022999999999996
451
+ - type: ndcg_at_100
452
+ value: 52.32599999999999
453
+ - type: ndcg_at_1000
454
+ value: 54.26
455
+ - type: ndcg_at_3
456
+ value: 42.986999999999995
457
+ - type: ndcg_at_5
458
+ value: 45.23
459
+ - type: precision_at_1
460
+ value: 38.471
461
+ - type: precision_at_10
462
+ value: 9.248000000000001
463
+ - type: precision_at_100
464
+ value: 1.469
465
+ - type: precision_at_1000
466
+ value: 0.193
467
+ - type: precision_at_3
468
+ value: 20.892
469
+ - type: precision_at_5
470
+ value: 14.892
471
+ - type: recall_at_1
472
+ value: 30.731
473
+ - type: recall_at_10
474
+ value: 59.561
475
+ - type: recall_at_100
476
+ value: 77.637
477
+ - type: recall_at_1000
478
+ value: 89.64999999999999
479
+ - type: recall_at_3
480
+ value: 44.897999999999996
481
+ - type: recall_at_5
482
+ value: 51.181
483
+ - task:
484
+ type: Retrieval
485
+ dataset:
486
+ type: BeIR/cqadupstack
487
+ name: MTEB CQADupstackGamingRetrieval
488
+ config: default
489
+ split: test
490
+ revision: 4885aa143210c98657558c04aaf3dc47cfb54340
491
+ metrics:
492
+ - type: map_at_1
493
+ value: 34.949000000000005
494
+ - type: map_at_10
495
+ value: 48.117
496
+ - type: map_at_100
497
+ value: 49.355
498
+ - type: map_at_1000
499
+ value: 49.409
500
+ - type: map_at_3
501
+ value: 44.732
502
+ - type: map_at_5
503
+ value: 46.555
504
+ - type: mrr_at_1
505
+ value: 40.188
506
+ - type: mrr_at_10
507
+ value: 51.452
508
+ - type: mrr_at_100
509
+ value: 52.219
510
+ - type: mrr_at_1000
511
+ value: 52.24100000000001
512
+ - type: mrr_at_3
513
+ value: 48.642
514
+ - type: mrr_at_5
515
+ value: 50.134
516
+ - type: ndcg_at_1
517
+ value: 40.188
518
+ - type: ndcg_at_10
519
+ value: 54.664
520
+ - type: ndcg_at_100
521
+ value: 59.38099999999999
522
+ - type: ndcg_at_1000
523
+ value: 60.363
524
+ - type: ndcg_at_3
525
+ value: 48.684
526
+ - type: ndcg_at_5
527
+ value: 51.406
528
+ - type: precision_at_1
529
+ value: 40.188
530
+ - type: precision_at_10
531
+ value: 9.116
532
+ - type: precision_at_100
533
+ value: 1.248
534
+ - type: precision_at_1000
535
+ value: 0.13699999999999998
536
+ - type: precision_at_3
537
+ value: 22.236
538
+ - type: precision_at_5
539
+ value: 15.310000000000002
540
+ - type: recall_at_1
541
+ value: 34.949000000000005
542
+ - type: recall_at_10
543
+ value: 70.767
544
+ - type: recall_at_100
545
+ value: 90.79
546
+ - type: recall_at_1000
547
+ value: 97.57900000000001
548
+ - type: recall_at_3
549
+ value: 54.723
550
+ - type: recall_at_5
551
+ value: 61.404
552
+ - task:
553
+ type: Retrieval
554
+ dataset:
555
+ type: BeIR/cqadupstack
556
+ name: MTEB CQADupstackGisRetrieval
557
+ config: default
558
+ split: test
559
+ revision: 5003b3064772da1887988e05400cf3806fe491f2
560
+ metrics:
561
+ - type: map_at_1
562
+ value: 25.312
563
+ - type: map_at_10
564
+ value: 34.799
565
+ - type: map_at_100
566
+ value: 35.906
567
+ - type: map_at_1000
568
+ value: 35.983
569
+ - type: map_at_3
570
+ value: 31.582
571
+ - type: map_at_5
572
+ value: 33.507999999999996
573
+ - type: mrr_at_1
574
+ value: 27.232
575
+ - type: mrr_at_10
576
+ value: 36.82
577
+ - type: mrr_at_100
578
+ value: 37.733
579
+ - type: mrr_at_1000
580
+ value: 37.791000000000004
581
+ - type: mrr_at_3
582
+ value: 33.804
583
+ - type: mrr_at_5
584
+ value: 35.606
585
+ - type: ndcg_at_1
586
+ value: 27.232
587
+ - type: ndcg_at_10
588
+ value: 40.524
589
+ - type: ndcg_at_100
590
+ value: 45.654
591
+ - type: ndcg_at_1000
592
+ value: 47.557
593
+ - type: ndcg_at_3
594
+ value: 34.312
595
+ - type: ndcg_at_5
596
+ value: 37.553
597
+ - type: precision_at_1
598
+ value: 27.232
599
+ - type: precision_at_10
600
+ value: 6.52
601
+ - type: precision_at_100
602
+ value: 0.9530000000000001
603
+ - type: precision_at_1000
604
+ value: 0.11399999999999999
605
+ - type: precision_at_3
606
+ value: 14.915000000000001
607
+ - type: precision_at_5
608
+ value: 10.847
609
+ - type: recall_at_1
610
+ value: 25.312
611
+ - type: recall_at_10
612
+ value: 56.169000000000004
613
+ - type: recall_at_100
614
+ value: 79.16499999999999
615
+ - type: recall_at_1000
616
+ value: 93.49300000000001
617
+ - type: recall_at_3
618
+ value: 39.5
619
+ - type: recall_at_5
620
+ value: 47.288999999999994
621
+ - task:
622
+ type: Retrieval
623
+ dataset:
624
+ type: BeIR/cqadupstack
625
+ name: MTEB CQADupstackMathematicaRetrieval
626
+ config: default
627
+ split: test
628
+ revision: 90fceea13679c63fe563ded68f3b6f06e50061de
629
+ metrics:
630
+ - type: map_at_1
631
+ value: 17.153
632
+ - type: map_at_10
633
+ value: 27.671
634
+ - type: map_at_100
635
+ value: 29.186
636
+ - type: map_at_1000
637
+ value: 29.299999999999997
638
+ - type: map_at_3
639
+ value: 24.490000000000002
640
+ - type: map_at_5
641
+ value: 26.178
642
+ - type: mrr_at_1
643
+ value: 21.144
644
+ - type: mrr_at_10
645
+ value: 32.177
646
+ - type: mrr_at_100
647
+ value: 33.247
648
+ - type: mrr_at_1000
649
+ value: 33.306000000000004
650
+ - type: mrr_at_3
651
+ value: 29.187
652
+ - type: mrr_at_5
653
+ value: 30.817
654
+ - type: ndcg_at_1
655
+ value: 21.144
656
+ - type: ndcg_at_10
657
+ value: 33.981
658
+ - type: ndcg_at_100
659
+ value: 40.549
660
+ - type: ndcg_at_1000
661
+ value: 43.03
662
+ - type: ndcg_at_3
663
+ value: 28.132
664
+ - type: ndcg_at_5
665
+ value: 30.721999999999998
666
+ - type: precision_at_1
667
+ value: 21.144
668
+ - type: precision_at_10
669
+ value: 6.666999999999999
670
+ - type: precision_at_100
671
+ value: 1.147
672
+ - type: precision_at_1000
673
+ value: 0.149
674
+ - type: precision_at_3
675
+ value: 14.302999999999999
676
+ - type: precision_at_5
677
+ value: 10.423
678
+ - type: recall_at_1
679
+ value: 17.153
680
+ - type: recall_at_10
681
+ value: 48.591
682
+ - type: recall_at_100
683
+ value: 76.413
684
+ - type: recall_at_1000
685
+ value: 93.8
686
+ - type: recall_at_3
687
+ value: 32.329
688
+ - type: recall_at_5
689
+ value: 38.958999999999996
690
+ - task:
691
+ type: Retrieval
692
+ dataset:
693
+ type: BeIR/cqadupstack
694
+ name: MTEB CQADupstackPhysicsRetrieval
695
+ config: default
696
+ split: test
697
+ revision: 79531abbd1fb92d06c6d6315a0cbbbf5bb247ea4
698
+ metrics:
699
+ - type: map_at_1
700
+ value: 27.909
701
+ - type: map_at_10
702
+ value: 40.168
703
+ - type: map_at_100
704
+ value: 41.524
705
+ - type: map_at_1000
706
+ value: 41.626000000000005
707
+ - type: map_at_3
708
+ value: 36.274
709
+ - type: map_at_5
710
+ value: 38.411
711
+ - type: mrr_at_1
712
+ value: 34.649
713
+ - type: mrr_at_10
714
+ value: 45.613
715
+ - type: mrr_at_100
716
+ value: 46.408
717
+ - type: mrr_at_1000
718
+ value: 46.444
719
+ - type: mrr_at_3
720
+ value: 42.620999999999995
721
+ - type: mrr_at_5
722
+ value: 44.277
723
+ - type: ndcg_at_1
724
+ value: 34.649
725
+ - type: ndcg_at_10
726
+ value: 47.071000000000005
727
+ - type: ndcg_at_100
728
+ value: 52.559999999999995
729
+ - type: ndcg_at_1000
730
+ value: 54.285000000000004
731
+ - type: ndcg_at_3
732
+ value: 40.63
733
+ - type: ndcg_at_5
734
+ value: 43.584
735
+ - type: precision_at_1
736
+ value: 34.649
737
+ - type: precision_at_10
738
+ value: 8.855
739
+ - type: precision_at_100
740
+ value: 1.361
741
+ - type: precision_at_1000
742
+ value: 0.167
743
+ - type: precision_at_3
744
+ value: 19.538
745
+ - type: precision_at_5
746
+ value: 14.187
747
+ - type: recall_at_1
748
+ value: 27.909
749
+ - type: recall_at_10
750
+ value: 62.275000000000006
751
+ - type: recall_at_100
752
+ value: 84.95
753
+ - type: recall_at_1000
754
+ value: 96.02000000000001
755
+ - type: recall_at_3
756
+ value: 44.767
757
+ - type: recall_at_5
758
+ value: 52.03
759
+ - task:
760
+ type: Retrieval
761
+ dataset:
762
+ type: BeIR/cqadupstack
763
+ name: MTEB CQADupstackProgrammersRetrieval
764
+ config: default
765
+ split: test
766
+ revision: 6184bc1440d2dbc7612be22b50686b8826d22b32
767
+ metrics:
768
+ - type: map_at_1
769
+ value: 25.846000000000004
770
+ - type: map_at_10
771
+ value: 36.870999999999995
772
+ - type: map_at_100
773
+ value: 38.294
774
+ - type: map_at_1000
775
+ value: 38.401
776
+ - type: map_at_3
777
+ value: 33.163
778
+ - type: map_at_5
779
+ value: 35.177
780
+ - type: mrr_at_1
781
+ value: 31.849
782
+ - type: mrr_at_10
783
+ value: 41.681000000000004
784
+ - type: mrr_at_100
785
+ value: 42.658
786
+ - type: mrr_at_1000
787
+ value: 42.71
788
+ - type: mrr_at_3
789
+ value: 39.003
790
+ - type: mrr_at_5
791
+ value: 40.436
792
+ - type: ndcg_at_1
793
+ value: 31.849
794
+ - type: ndcg_at_10
795
+ value: 43.291000000000004
796
+ - type: ndcg_at_100
797
+ value: 49.136
798
+ - type: ndcg_at_1000
799
+ value: 51.168
800
+ - type: ndcg_at_3
801
+ value: 37.297999999999995
802
+ - type: ndcg_at_5
803
+ value: 39.934
804
+ - type: precision_at_1
805
+ value: 31.849
806
+ - type: precision_at_10
807
+ value: 8.219
808
+ - type: precision_at_100
809
+ value: 1.318
810
+ - type: precision_at_1000
811
+ value: 0.167
812
+ - type: precision_at_3
813
+ value: 18.151
814
+ - type: precision_at_5
815
+ value: 13.242
816
+ - type: recall_at_1
817
+ value: 25.846000000000004
818
+ - type: recall_at_10
819
+ value: 57.642
820
+ - type: recall_at_100
821
+ value: 82.069
822
+ - type: recall_at_1000
823
+ value: 95.684
824
+ - type: recall_at_3
825
+ value: 40.778999999999996
826
+ - type: recall_at_5
827
+ value: 47.647
828
+ - task:
829
+ type: Retrieval
830
+ dataset:
831
+ type: BeIR/cqadupstack
832
+ name: MTEB CQADupstackRetrieval
833
+ config: default
834
+ split: test
835
+ revision: 4ffe81d471b1924886b33c7567bfb200e9eec5c4
836
+ metrics:
837
+ - type: map_at_1
838
+ value: 25.34866666666667
839
+ - type: map_at_10
840
+ value: 35.65541666666667
841
+ - type: map_at_100
842
+ value: 36.982416666666666
843
+ - type: map_at_1000
844
+ value: 37.09416666666667
845
+ - type: map_at_3
846
+ value: 32.421499999999995
847
+ - type: map_at_5
848
+ value: 34.20266666666667
849
+ - type: mrr_at_1
850
+ value: 30.02116666666667
851
+ - type: mrr_at_10
852
+ value: 39.781666666666666
853
+ - type: mrr_at_100
854
+ value: 40.69733333333333
855
+ - type: mrr_at_1000
856
+ value: 40.74875
857
+ - type: mrr_at_3
858
+ value: 37.043083333333335
859
+ - type: mrr_at_5
860
+ value: 38.56391666666666
861
+ - type: ndcg_at_1
862
+ value: 30.02116666666667
863
+ - type: ndcg_at_10
864
+ value: 41.66133333333333
865
+ - type: ndcg_at_100
866
+ value: 47.21474999999999
867
+ - type: ndcg_at_1000
868
+ value: 49.29600000000001
869
+ - type: ndcg_at_3
870
+ value: 36.06958333333334
871
+ - type: ndcg_at_5
872
+ value: 38.66858333333333
873
+ - type: precision_at_1
874
+ value: 30.02116666666667
875
+ - type: precision_at_10
876
+ value: 7.497249999999999
877
+ - type: precision_at_100
878
+ value: 1.2044166666666667
879
+ - type: precision_at_1000
880
+ value: 0.15766666666666665
881
+ - type: precision_at_3
882
+ value: 16.83458333333333
883
+ - type: precision_at_5
884
+ value: 12.134
885
+ - type: recall_at_1
886
+ value: 25.34866666666667
887
+ - type: recall_at_10
888
+ value: 55.40541666666666
889
+ - type: recall_at_100
890
+ value: 79.38683333333333
891
+ - type: recall_at_1000
892
+ value: 93.50958333333334
893
+ - type: recall_at_3
894
+ value: 39.99858333333334
895
+ - type: recall_at_5
896
+ value: 46.55741666666666
897
+ - task:
898
+ type: Retrieval
899
+ dataset:
900
+ type: BeIR/cqadupstack
901
+ name: MTEB CQADupstackStatsRetrieval
902
+ config: default
903
+ split: test
904
+ revision: 65ac3a16b8e91f9cee4c9828cc7c335575432a2a
905
+ metrics:
906
+ - type: map_at_1
907
+ value: 25.102000000000004
908
+ - type: map_at_10
909
+ value: 33.31
910
+ - type: map_at_100
911
+ value: 34.443
912
+ - type: map_at_1000
913
+ value: 34.547
914
+ - type: map_at_3
915
+ value: 30.932
916
+ - type: map_at_5
917
+ value: 32.126
918
+ - type: mrr_at_1
919
+ value: 28.221
920
+ - type: mrr_at_10
921
+ value: 36.519
922
+ - type: mrr_at_100
923
+ value: 37.425000000000004
924
+ - type: mrr_at_1000
925
+ value: 37.498
926
+ - type: mrr_at_3
927
+ value: 34.254
928
+ - type: mrr_at_5
929
+ value: 35.388999999999996
930
+ - type: ndcg_at_1
931
+ value: 28.221
932
+ - type: ndcg_at_10
933
+ value: 38.340999999999994
934
+ - type: ndcg_at_100
935
+ value: 43.572
936
+ - type: ndcg_at_1000
937
+ value: 45.979
938
+ - type: ndcg_at_3
939
+ value: 33.793
940
+ - type: ndcg_at_5
941
+ value: 35.681000000000004
942
+ - type: precision_at_1
943
+ value: 28.221
944
+ - type: precision_at_10
945
+ value: 6.135
946
+ - type: precision_at_100
947
+ value: 0.946
948
+ - type: precision_at_1000
949
+ value: 0.123
950
+ - type: precision_at_3
951
+ value: 14.519000000000002
952
+ - type: precision_at_5
953
+ value: 9.969
954
+ - type: recall_at_1
955
+ value: 25.102000000000004
956
+ - type: recall_at_10
957
+ value: 50.639
958
+ - type: recall_at_100
959
+ value: 74.075
960
+ - type: recall_at_1000
961
+ value: 91.393
962
+ - type: recall_at_3
963
+ value: 37.952000000000005
964
+ - type: recall_at_5
965
+ value: 42.71
966
+ - task:
967
+ type: Retrieval
968
+ dataset:
969
+ type: BeIR/cqadupstack
970
+ name: MTEB CQADupstackTexRetrieval
971
+ config: default
972
+ split: test
973
+ revision: 46989137a86843e03a6195de44b09deda022eec7
974
+ metrics:
975
+ - type: map_at_1
976
+ value: 18.618000000000002
977
+ - type: map_at_10
978
+ value: 26.714
979
+ - type: map_at_100
980
+ value: 27.929
981
+ - type: map_at_1000
982
+ value: 28.057
983
+ - type: map_at_3
984
+ value: 24.134
985
+ - type: map_at_5
986
+ value: 25.575
987
+ - type: mrr_at_1
988
+ value: 22.573999999999998
989
+ - type: mrr_at_10
990
+ value: 30.786
991
+ - type: mrr_at_100
992
+ value: 31.746000000000002
993
+ - type: mrr_at_1000
994
+ value: 31.822
995
+ - type: mrr_at_3
996
+ value: 28.412
997
+ - type: mrr_at_5
998
+ value: 29.818
999
+ - type: ndcg_at_1
1000
+ value: 22.573999999999998
1001
+ - type: ndcg_at_10
1002
+ value: 31.852000000000004
1003
+ - type: ndcg_at_100
1004
+ value: 37.477
1005
+ - type: ndcg_at_1000
1006
+ value: 40.331
1007
+ - type: ndcg_at_3
1008
+ value: 27.314
1009
+ - type: ndcg_at_5
1010
+ value: 29.485
1011
+ - type: precision_at_1
1012
+ value: 22.573999999999998
1013
+ - type: precision_at_10
1014
+ value: 5.86
1015
+ - type: precision_at_100
1016
+ value: 1.012
1017
+ - type: precision_at_1000
1018
+ value: 0.146
1019
+ - type: precision_at_3
1020
+ value: 13.099
1021
+ - type: precision_at_5
1022
+ value: 9.56
1023
+ - type: recall_at_1
1024
+ value: 18.618000000000002
1025
+ - type: recall_at_10
1026
+ value: 43.134
1027
+ - type: recall_at_100
1028
+ value: 68.294
1029
+ - type: recall_at_1000
1030
+ value: 88.283
1031
+ - type: recall_at_3
1032
+ value: 30.397999999999996
1033
+ - type: recall_at_5
1034
+ value: 35.998000000000005
1035
+ - task:
1036
+ type: Retrieval
1037
+ dataset:
1038
+ type: BeIR/cqadupstack
1039
+ name: MTEB CQADupstackUnixRetrieval
1040
+ config: default
1041
+ split: test
1042
+ revision: 6c6430d3a6d36f8d2a829195bc5dc94d7e063e53
1043
+ metrics:
1044
+ - type: map_at_1
1045
+ value: 27.76
1046
+ - type: map_at_10
1047
+ value: 37.569
1048
+ - type: map_at_100
1049
+ value: 38.784
1050
+ - type: map_at_1000
1051
+ value: 38.884
1052
+ - type: map_at_3
1053
+ value: 34.379
1054
+ - type: map_at_5
1055
+ value: 36.092999999999996
1056
+ - type: mrr_at_1
1057
+ value: 32.556000000000004
1058
+ - type: mrr_at_10
1059
+ value: 41.870000000000005
1060
+ - type: mrr_at_100
1061
+ value: 42.759
1062
+ - type: mrr_at_1000
1063
+ value: 42.806
1064
+ - type: mrr_at_3
1065
+ value: 39.086
1066
+ - type: mrr_at_5
1067
+ value: 40.574
1068
+ - type: ndcg_at_1
1069
+ value: 32.556000000000004
1070
+ - type: ndcg_at_10
1071
+ value: 43.382
1072
+ - type: ndcg_at_100
1073
+ value: 48.943
1074
+ - type: ndcg_at_1000
1075
+ value: 50.961999999999996
1076
+ - type: ndcg_at_3
1077
+ value: 37.758
1078
+ - type: ndcg_at_5
1079
+ value: 40.282000000000004
1080
+ - type: precision_at_1
1081
+ value: 32.556000000000004
1082
+ - type: precision_at_10
1083
+ value: 7.463
1084
+ - type: precision_at_100
1085
+ value: 1.1480000000000001
1086
+ - type: precision_at_1000
1087
+ value: 0.14300000000000002
1088
+ - type: precision_at_3
1089
+ value: 17.133000000000003
1090
+ - type: precision_at_5
1091
+ value: 12.164
1092
+ - type: recall_at_1
1093
+ value: 27.76
1094
+ - type: recall_at_10
1095
+ value: 56.71000000000001
1096
+ - type: recall_at_100
1097
+ value: 81.053
1098
+ - type: recall_at_1000
1099
+ value: 94.75
1100
+ - type: recall_at_3
1101
+ value: 41.387
1102
+ - type: recall_at_5
1103
+ value: 47.818
1104
+ - task:
1105
+ type: Retrieval
1106
+ dataset:
1107
+ type: BeIR/cqadupstack
1108
+ name: MTEB CQADupstackWebmastersRetrieval
1109
+ config: default
1110
+ split: test
1111
+ revision: 160c094312a0e1facb97e55eeddb698c0abe3571
1112
+ metrics:
1113
+ - type: map_at_1
1114
+ value: 23.62
1115
+ - type: map_at_10
1116
+ value: 33.522999999999996
1117
+ - type: map_at_100
1118
+ value: 35.281
1119
+ - type: map_at_1000
1120
+ value: 35.504000000000005
1121
+ - type: map_at_3
1122
+ value: 30.314999999999998
1123
+ - type: map_at_5
1124
+ value: 32.065
1125
+ - type: mrr_at_1
1126
+ value: 28.458
1127
+ - type: mrr_at_10
1128
+ value: 38.371
1129
+ - type: mrr_at_100
1130
+ value: 39.548
1131
+ - type: mrr_at_1000
1132
+ value: 39.601
1133
+ - type: mrr_at_3
1134
+ value: 35.638999999999996
1135
+ - type: mrr_at_5
1136
+ value: 37.319
1137
+ - type: ndcg_at_1
1138
+ value: 28.458
1139
+ - type: ndcg_at_10
1140
+ value: 39.715
1141
+ - type: ndcg_at_100
1142
+ value: 46.394999999999996
1143
+ - type: ndcg_at_1000
1144
+ value: 48.943999999999996
1145
+ - type: ndcg_at_3
1146
+ value: 34.361999999999995
1147
+ - type: ndcg_at_5
1148
+ value: 37.006
1149
+ - type: precision_at_1
1150
+ value: 28.458
1151
+ - type: precision_at_10
1152
+ value: 7.5889999999999995
1153
+ - type: precision_at_100
1154
+ value: 1.514
1155
+ - type: precision_at_1000
1156
+ value: 0.242
1157
+ - type: precision_at_3
1158
+ value: 16.073999999999998
1159
+ - type: precision_at_5
1160
+ value: 11.976
1161
+ - type: recall_at_1
1162
+ value: 23.62
1163
+ - type: recall_at_10
1164
+ value: 52.117000000000004
1165
+ - type: recall_at_100
1166
+ value: 81.097
1167
+ - type: recall_at_1000
1168
+ value: 96.47
1169
+ - type: recall_at_3
1170
+ value: 37.537
1171
+ - type: recall_at_5
1172
+ value: 44.112
1173
+ - task:
1174
+ type: Retrieval
1175
+ dataset:
1176
+ type: BeIR/cqadupstack
1177
+ name: MTEB CQADupstackWordpressRetrieval
1178
+ config: default
1179
+ split: test
1180
+ revision: 4ffe81d471b1924886b33c7567bfb200e9eec5c4
1181
+ metrics:
1182
+ - type: map_at_1
1183
+ value: 18.336
1184
+ - type: map_at_10
1185
+ value: 26.811
1186
+ - type: map_at_100
1187
+ value: 27.892
1188
+ - type: map_at_1000
1189
+ value: 27.986
1190
+ - type: map_at_3
1191
+ value: 23.976
1192
+ - type: map_at_5
1193
+ value: 25.605
1194
+ - type: mrr_at_1
1195
+ value: 20.148
1196
+ - type: mrr_at_10
1197
+ value: 28.898000000000003
1198
+ - type: mrr_at_100
1199
+ value: 29.866
1200
+ - type: mrr_at_1000
1201
+ value: 29.929
1202
+ - type: mrr_at_3
1203
+ value: 26.247999999999998
1204
+ - type: mrr_at_5
1205
+ value: 27.744999999999997
1206
+ - type: ndcg_at_1
1207
+ value: 20.148
1208
+ - type: ndcg_at_10
1209
+ value: 32.059
1210
+ - type: ndcg_at_100
1211
+ value: 37.495
1212
+ - type: ndcg_at_1000
1213
+ value: 39.855000000000004
1214
+ - type: ndcg_at_3
1215
+ value: 26.423000000000002
1216
+ - type: ndcg_at_5
1217
+ value: 29.212
1218
+ - type: precision_at_1
1219
+ value: 20.148
1220
+ - type: precision_at_10
1221
+ value: 5.268
1222
+ - type: precision_at_100
1223
+ value: 0.872
1224
+ - type: precision_at_1000
1225
+ value: 0.11900000000000001
1226
+ - type: precision_at_3
1227
+ value: 11.459999999999999
1228
+ - type: precision_at_5
1229
+ value: 8.503
1230
+ - type: recall_at_1
1231
+ value: 18.336
1232
+ - type: recall_at_10
1233
+ value: 46.411
1234
+ - type: recall_at_100
1235
+ value: 71.33500000000001
1236
+ - type: recall_at_1000
1237
+ value: 88.895
1238
+ - type: recall_at_3
1239
+ value: 31.134
1240
+ - type: recall_at_5
1241
+ value: 37.862
1242
+ - task:
1243
+ type: Retrieval
1244
+ dataset:
1245
+ type: mteb/climate-fever
1246
+ name: MTEB ClimateFEVER
1247
+ config: default
1248
+ split: test
1249
+ revision: 47f2ac6acb640fc46020b02a5b59fdda04d39380
1250
+ metrics:
1251
+ - type: map_at_1
1252
+ value: 21.149
1253
+ - type: map_at_10
1254
+ value: 35.251
1255
+ - type: map_at_100
1256
+ value: 37.342
1257
+ - type: map_at_1000
1258
+ value: 37.516
1259
+ - type: map_at_3
1260
+ value: 30.543
1261
+ - type: map_at_5
1262
+ value: 33.19
1263
+ - type: mrr_at_1
1264
+ value: 47.687000000000005
1265
+ - type: mrr_at_10
1266
+ value: 59.391000000000005
1267
+ - type: mrr_at_100
1268
+ value: 59.946999999999996
1269
+ - type: mrr_at_1000
1270
+ value: 59.965999999999994
1271
+ - type: mrr_at_3
1272
+ value: 56.938
1273
+ - type: mrr_at_5
1274
+ value: 58.498000000000005
1275
+ - type: ndcg_at_1
1276
+ value: 47.687000000000005
1277
+ - type: ndcg_at_10
1278
+ value: 45.381
1279
+ - type: ndcg_at_100
1280
+ value: 52.405
1281
+ - type: ndcg_at_1000
1282
+ value: 55.041
1283
+ - type: ndcg_at_3
1284
+ value: 40.024
1285
+ - type: ndcg_at_5
1286
+ value: 41.821999999999996
1287
+ - type: precision_at_1
1288
+ value: 47.687000000000005
1289
+ - type: precision_at_10
1290
+ value: 13.355
1291
+ - type: precision_at_100
1292
+ value: 2.113
1293
+ - type: precision_at_1000
1294
+ value: 0.261
1295
+ - type: precision_at_3
1296
+ value: 29.793999999999997
1297
+ - type: precision_at_5
1298
+ value: 21.811
1299
+ - type: recall_at_1
1300
+ value: 21.149
1301
+ - type: recall_at_10
1302
+ value: 49.937
1303
+ - type: recall_at_100
1304
+ value: 73.382
1305
+ - type: recall_at_1000
1306
+ value: 87.606
1307
+ - type: recall_at_3
1308
+ value: 35.704
1309
+ - type: recall_at_5
1310
+ value: 42.309000000000005
1311
+ - task:
1312
+ type: Retrieval
1313
+ dataset:
1314
+ type: C-MTEB/CmedqaRetrieval
1315
+ name: MTEB CmedqaRetrieval
1316
+ config: default
1317
+ split: dev
1318
+ revision: cd540c506dae1cf9e9a59c3e06f42030d54e7301
1319
+ metrics:
1320
+ - type: map_at_1
1321
+ value: 28.74
1322
+ - type: map_at_10
1323
+ value: 41.981
1324
+ - type: map_at_100
1325
+ value: 43.753
1326
+ - type: map_at_1000
1327
+ value: 43.858999999999995
1328
+ - type: map_at_3
1329
+ value: 37.634
1330
+ - type: map_at_5
1331
+ value: 40.158
1332
+ - type: mrr_at_1
1333
+ value: 43.086
1334
+ - type: mrr_at_10
1335
+ value: 51.249
1336
+ - type: mrr_at_100
1337
+ value: 52.154
1338
+ - type: mrr_at_1000
1339
+ value: 52.190999999999995
1340
+ - type: mrr_at_3
1341
+ value: 48.787000000000006
1342
+ - type: mrr_at_5
1343
+ value: 50.193
1344
+ - type: ndcg_at_1
1345
+ value: 43.086
1346
+ - type: ndcg_at_10
1347
+ value: 48.703
1348
+ - type: ndcg_at_100
1349
+ value: 55.531
1350
+ - type: ndcg_at_1000
1351
+ value: 57.267999999999994
1352
+ - type: ndcg_at_3
1353
+ value: 43.464000000000006
1354
+ - type: ndcg_at_5
1355
+ value: 45.719
1356
+ - type: precision_at_1
1357
+ value: 43.086
1358
+ - type: precision_at_10
1359
+ value: 10.568
1360
+ - type: precision_at_100
1361
+ value: 1.616
1362
+ - type: precision_at_1000
1363
+ value: 0.184
1364
+ - type: precision_at_3
1365
+ value: 24.256
1366
+ - type: precision_at_5
1367
+ value: 17.509
1368
+ - type: recall_at_1
1369
+ value: 28.74
1370
+ - type: recall_at_10
1371
+ value: 59.349
1372
+ - type: recall_at_100
1373
+ value: 87.466
1374
+ - type: recall_at_1000
1375
+ value: 98.914
1376
+ - type: recall_at_3
1377
+ value: 43.322
1378
+ - type: recall_at_5
1379
+ value: 50.409000000000006
1380
+ - task:
1381
+ type: PairClassification
1382
+ dataset:
1383
+ type: C-MTEB/CMNLI
1384
+ name: MTEB Cmnli
1385
+ config: default
1386
+ split: validation
1387
+ revision: 41bc36f332156f7adc9e38f53777c959b2ae9766
1388
+ metrics:
1389
+ - type: cos_sim_accuracy
1390
+ value: 79.03788334335539
1391
+ - type: cos_sim_ap
1392
+ value: 87.21703260472833
1393
+ - type: cos_sim_f1
1394
+ value: 79.87784187309127
1395
+ - type: cos_sim_precision
1396
+ value: 77.36634531113059
1397
+ - type: cos_sim_recall
1398
+ value: 82.55786766425064
1399
+ - type: dot_accuracy
1400
+ value: 79.03788334335539
1401
+ - type: dot_ap
1402
+ value: 87.22906528217948
1403
+ - type: dot_f1
1404
+ value: 79.87784187309127
1405
+ - type: dot_precision
1406
+ value: 77.36634531113059
1407
+ - type: dot_recall
1408
+ value: 82.55786766425064
1409
+ - type: euclidean_accuracy
1410
+ value: 79.03788334335539
1411
+ - type: euclidean_ap
1412
+ value: 87.21703670465753
1413
+ - type: euclidean_f1
1414
+ value: 79.87784187309127
1415
+ - type: euclidean_precision
1416
+ value: 77.36634531113059
1417
+ - type: euclidean_recall
1418
+ value: 82.55786766425064
1419
+ - type: manhattan_accuracy
1420
+ value: 78.28021647624774
1421
+ - type: manhattan_ap
1422
+ value: 86.66244127855394
1423
+ - type: manhattan_f1
1424
+ value: 79.24485643228577
1425
+ - type: manhattan_precision
1426
+ value: 76.71262858393521
1427
+ - type: manhattan_recall
1428
+ value: 81.94996492868833
1429
+ - type: max_accuracy
1430
+ value: 79.03788334335539
1431
+ - type: max_ap
1432
+ value: 87.22906528217948
1433
+ - type: max_f1
1434
+ value: 79.87784187309127
1435
+ - task:
1436
+ type: Retrieval
1437
+ dataset:
1438
+ type: C-MTEB/CovidRetrieval
1439
+ name: MTEB CovidRetrieval
1440
+ config: default
1441
+ split: dev
1442
+ revision: 1271c7809071a13532e05f25fb53511ffce77117
1443
+ metrics:
1444
+ - type: map_at_1
1445
+ value: 67.597
1446
+ - type: map_at_10
1447
+ value: 75.81599999999999
1448
+ - type: map_at_100
1449
+ value: 76.226
1450
+ - type: map_at_1000
1451
+ value: 76.23100000000001
1452
+ - type: map_at_3
1453
+ value: 73.907
1454
+ - type: map_at_5
1455
+ value: 75.08200000000001
1456
+ - type: mrr_at_1
1457
+ value: 67.756
1458
+ - type: mrr_at_10
1459
+ value: 75.8
1460
+ - type: mrr_at_100
1461
+ value: 76.205
1462
+ - type: mrr_at_1000
1463
+ value: 76.21
1464
+ - type: mrr_at_3
1465
+ value: 73.955
1466
+ - type: mrr_at_5
1467
+ value: 75.093
1468
+ - type: ndcg_at_1
1469
+ value: 67.756
1470
+ - type: ndcg_at_10
1471
+ value: 79.598
1472
+ - type: ndcg_at_100
1473
+ value: 81.34400000000001
1474
+ - type: ndcg_at_1000
1475
+ value: 81.477
1476
+ - type: ndcg_at_3
1477
+ value: 75.876
1478
+ - type: ndcg_at_5
1479
+ value: 77.94200000000001
1480
+ - type: precision_at_1
1481
+ value: 67.756
1482
+ - type: precision_at_10
1483
+ value: 9.231
1484
+ - type: precision_at_100
1485
+ value: 1.0
1486
+ - type: precision_at_1000
1487
+ value: 0.101
1488
+ - type: precision_at_3
1489
+ value: 27.362
1490
+ - type: precision_at_5
1491
+ value: 17.45
1492
+ - type: recall_at_1
1493
+ value: 67.597
1494
+ - type: recall_at_10
1495
+ value: 91.307
1496
+ - type: recall_at_100
1497
+ value: 98.946
1498
+ - type: recall_at_1000
1499
+ value: 100.0
1500
+ - type: recall_at_3
1501
+ value: 81.428
1502
+ - type: recall_at_5
1503
+ value: 86.407
1504
+ - task:
1505
+ type: Retrieval
1506
+ dataset:
1507
+ type: mteb/dbpedia
1508
+ name: MTEB DBPedia
1509
+ config: default
1510
+ split: test
1511
+ revision: c0f706b76e590d620bd6618b3ca8efdd34e2d659
1512
+ metrics:
1513
+ - type: map_at_1
1514
+ value: 9.33
1515
+ - type: map_at_10
1516
+ value: 23.118
1517
+ - type: map_at_100
1518
+ value: 34.28
1519
+ - type: map_at_1000
1520
+ value: 36.574
1521
+ - type: map_at_3
1522
+ value: 15.576
1523
+ - type: map_at_5
1524
+ value: 18.778
1525
+ - type: mrr_at_1
1526
+ value: 75.25
1527
+ - type: mrr_at_10
1528
+ value: 81.958
1529
+ - type: mrr_at_100
1530
+ value: 82.282
1531
+ - type: mrr_at_1000
1532
+ value: 82.285
1533
+ - type: mrr_at_3
1534
+ value: 81.042
1535
+ - type: mrr_at_5
1536
+ value: 81.62899999999999
1537
+ - type: ndcg_at_1
1538
+ value: 63.625
1539
+ - type: ndcg_at_10
1540
+ value: 50.781
1541
+ - type: ndcg_at_100
1542
+ value: 55.537000000000006
1543
+ - type: ndcg_at_1000
1544
+ value: 62.651
1545
+ - type: ndcg_at_3
1546
+ value: 55.297
1547
+ - type: ndcg_at_5
1548
+ value: 53.103
1549
+ - type: precision_at_1
1550
+ value: 75.25
1551
+ - type: precision_at_10
1552
+ value: 41.475
1553
+ - type: precision_at_100
1554
+ value: 13.5
1555
+ - type: precision_at_1000
1556
+ value: 2.686
1557
+ - type: precision_at_3
1558
+ value: 59.333000000000006
1559
+ - type: precision_at_5
1560
+ value: 51.9
1561
+ - type: recall_at_1
1562
+ value: 9.33
1563
+ - type: recall_at_10
1564
+ value: 29.398000000000003
1565
+ - type: recall_at_100
1566
+ value: 61.951
1567
+ - type: recall_at_1000
1568
+ value: 85.463
1569
+ - type: recall_at_3
1570
+ value: 17.267
1571
+ - type: recall_at_5
1572
+ value: 21.89
1573
+ - task:
1574
+ type: Retrieval
1575
+ dataset:
1576
+ type: C-MTEB/DuRetrieval
1577
+ name: MTEB DuRetrieval
1578
+ config: default
1579
+ split: dev
1580
+ revision: a1a333e290fe30b10f3f56498e3a0d911a693ced
1581
+ metrics:
1582
+ - type: map_at_1
1583
+ value: 25.608999999999998
1584
+ - type: map_at_10
1585
+ value: 78.649
1586
+ - type: map_at_100
1587
+ value: 81.67699999999999
1588
+ - type: map_at_1000
1589
+ value: 81.71000000000001
1590
+ - type: map_at_3
1591
+ value: 54.112
1592
+ - type: map_at_5
1593
+ value: 68.34700000000001
1594
+ - type: mrr_at_1
1595
+ value: 87.75
1596
+ - type: mrr_at_10
1597
+ value: 92.175
1598
+ - type: mrr_at_100
1599
+ value: 92.225
1600
+ - type: mrr_at_1000
1601
+ value: 92.227
1602
+ - type: mrr_at_3
1603
+ value: 91.833
1604
+ - type: mrr_at_5
1605
+ value: 92.06800000000001
1606
+ - type: ndcg_at_1
1607
+ value: 87.75
1608
+ - type: ndcg_at_10
1609
+ value: 86.56700000000001
1610
+ - type: ndcg_at_100
1611
+ value: 89.519
1612
+ - type: ndcg_at_1000
1613
+ value: 89.822
1614
+ - type: ndcg_at_3
1615
+ value: 84.414
1616
+ - type: ndcg_at_5
1617
+ value: 83.721
1618
+ - type: precision_at_1
1619
+ value: 87.75
1620
+ - type: precision_at_10
1621
+ value: 41.665
1622
+ - type: precision_at_100
1623
+ value: 4.827
1624
+ - type: precision_at_1000
1625
+ value: 0.49
1626
+ - type: precision_at_3
1627
+ value: 75.533
1628
+ - type: precision_at_5
1629
+ value: 64.01
1630
+ - type: recall_at_1
1631
+ value: 25.608999999999998
1632
+ - type: recall_at_10
1633
+ value: 88.708
1634
+ - type: recall_at_100
1635
+ value: 98.007
1636
+ - type: recall_at_1000
1637
+ value: 99.555
1638
+ - type: recall_at_3
1639
+ value: 57.157000000000004
1640
+ - type: recall_at_5
1641
+ value: 74.118
1642
+ - task:
1643
+ type: Retrieval
1644
+ dataset:
1645
+ type: C-MTEB/EcomRetrieval
1646
+ name: MTEB EcomRetrieval
1647
+ config: default
1648
+ split: dev
1649
+ revision: 687de13dc7294d6fd9be10c6945f9e8fec8166b9
1650
+ metrics:
1651
+ - type: map_at_1
1652
+ value: 55.800000000000004
1653
+ - type: map_at_10
1654
+ value: 65.952
1655
+ - type: map_at_100
1656
+ value: 66.413
1657
+ - type: map_at_1000
1658
+ value: 66.426
1659
+ - type: map_at_3
1660
+ value: 63.3
1661
+ - type: map_at_5
1662
+ value: 64.945
1663
+ - type: mrr_at_1
1664
+ value: 55.800000000000004
1665
+ - type: mrr_at_10
1666
+ value: 65.952
1667
+ - type: mrr_at_100
1668
+ value: 66.413
1669
+ - type: mrr_at_1000
1670
+ value: 66.426
1671
+ - type: mrr_at_3
1672
+ value: 63.3
1673
+ - type: mrr_at_5
1674
+ value: 64.945
1675
+ - type: ndcg_at_1
1676
+ value: 55.800000000000004
1677
+ - type: ndcg_at_10
1678
+ value: 71.00800000000001
1679
+ - type: ndcg_at_100
1680
+ value: 72.974
1681
+ - type: ndcg_at_1000
1682
+ value: 73.302
1683
+ - type: ndcg_at_3
1684
+ value: 65.669
1685
+ - type: ndcg_at_5
1686
+ value: 68.634
1687
+ - type: precision_at_1
1688
+ value: 55.800000000000004
1689
+ - type: precision_at_10
1690
+ value: 8.690000000000001
1691
+ - type: precision_at_100
1692
+ value: 0.955
1693
+ - type: precision_at_1000
1694
+ value: 0.098
1695
+ - type: precision_at_3
1696
+ value: 24.166999999999998
1697
+ - type: precision_at_5
1698
+ value: 15.939999999999998
1699
+ - type: recall_at_1
1700
+ value: 55.800000000000004
1701
+ - type: recall_at_10
1702
+ value: 86.9
1703
+ - type: recall_at_100
1704
+ value: 95.5
1705
+ - type: recall_at_1000
1706
+ value: 98.0
1707
+ - type: recall_at_3
1708
+ value: 72.5
1709
+ - type: recall_at_5
1710
+ value: 79.7
1711
+ - task:
1712
+ type: Classification
1713
+ dataset:
1714
+ type: mteb/emotion
1715
+ name: MTEB EmotionClassification
1716
+ config: default
1717
+ split: test
1718
+ revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37
1719
+ metrics:
1720
+ - type: accuracy
1721
+ value: 67.39500000000001
1722
+ - type: f1
1723
+ value: 62.01837785021389
1724
+ - task:
1725
+ type: Retrieval
1726
+ dataset:
1727
+ type: mteb/fever
1728
+ name: MTEB FEVER
1729
+ config: default
1730
+ split: test
1731
+ revision: bea83ef9e8fb933d90a2f1d5515737465d613e12
1732
+ metrics:
1733
+ - type: map_at_1
1734
+ value: 86.27
1735
+ - type: map_at_10
1736
+ value: 92.163
1737
+ - type: map_at_100
1738
+ value: 92.351
1739
+ - type: map_at_1000
1740
+ value: 92.36
1741
+ - type: map_at_3
1742
+ value: 91.36
1743
+ - type: map_at_5
1744
+ value: 91.888
1745
+ - type: mrr_at_1
1746
+ value: 92.72399999999999
1747
+ - type: mrr_at_10
1748
+ value: 95.789
1749
+ - type: mrr_at_100
1750
+ value: 95.80300000000001
1751
+ - type: mrr_at_1000
1752
+ value: 95.804
1753
+ - type: mrr_at_3
1754
+ value: 95.64200000000001
1755
+ - type: mrr_at_5
1756
+ value: 95.75
1757
+ - type: ndcg_at_1
1758
+ value: 92.72399999999999
1759
+ - type: ndcg_at_10
1760
+ value: 94.269
1761
+ - type: ndcg_at_100
1762
+ value: 94.794
1763
+ - type: ndcg_at_1000
1764
+ value: 94.94
1765
+ - type: ndcg_at_3
1766
+ value: 93.427
1767
+ - type: ndcg_at_5
1768
+ value: 93.914
1769
+ - type: precision_at_1
1770
+ value: 92.72399999999999
1771
+ - type: precision_at_10
1772
+ value: 11.007
1773
+ - type: precision_at_100
1774
+ value: 1.153
1775
+ - type: precision_at_1000
1776
+ value: 0.11800000000000001
1777
+ - type: precision_at_3
1778
+ value: 34.993
1779
+ - type: precision_at_5
1780
+ value: 21.542
1781
+ - type: recall_at_1
1782
+ value: 86.27
1783
+ - type: recall_at_10
1784
+ value: 97.031
1785
+ - type: recall_at_100
1786
+ value: 98.839
1787
+ - type: recall_at_1000
1788
+ value: 99.682
1789
+ - type: recall_at_3
1790
+ value: 94.741
1791
+ - type: recall_at_5
1792
+ value: 96.03
1793
+ - task:
1794
+ type: Retrieval
1795
+ dataset:
1796
+ type: mteb/fiqa
1797
+ name: MTEB FiQA2018
1798
+ config: default
1799
+ split: test
1800
+ revision: 27a168819829fe9bcd655c2df245fb19452e8e06
1801
+ metrics:
1802
+ - type: map_at_1
1803
+ value: 29.561999999999998
1804
+ - type: map_at_10
1805
+ value: 48.52
1806
+ - type: map_at_100
1807
+ value: 50.753
1808
+ - type: map_at_1000
1809
+ value: 50.878
1810
+ - type: map_at_3
1811
+ value: 42.406
1812
+ - type: map_at_5
1813
+ value: 45.994
1814
+ - type: mrr_at_1
1815
+ value: 54.784
1816
+ - type: mrr_at_10
1817
+ value: 64.51400000000001
1818
+ - type: mrr_at_100
1819
+ value: 65.031
1820
+ - type: mrr_at_1000
1821
+ value: 65.05199999999999
1822
+ - type: mrr_at_3
1823
+ value: 62.474
1824
+ - type: mrr_at_5
1825
+ value: 63.562
1826
+ - type: ndcg_at_1
1827
+ value: 54.784
1828
+ - type: ndcg_at_10
1829
+ value: 57.138
1830
+ - type: ndcg_at_100
1831
+ value: 63.666999999999994
1832
+ - type: ndcg_at_1000
1833
+ value: 65.379
1834
+ - type: ndcg_at_3
1835
+ value: 52.589
1836
+ - type: ndcg_at_5
1837
+ value: 54.32599999999999
1838
+ - type: precision_at_1
1839
+ value: 54.784
1840
+ - type: precision_at_10
1841
+ value: 15.693999999999999
1842
+ - type: precision_at_100
1843
+ value: 2.259
1844
+ - type: precision_at_1000
1845
+ value: 0.256
1846
+ - type: precision_at_3
1847
+ value: 34.774
1848
+ - type: precision_at_5
1849
+ value: 25.772000000000002
1850
+ - type: recall_at_1
1851
+ value: 29.561999999999998
1852
+ - type: recall_at_10
1853
+ value: 64.708
1854
+ - type: recall_at_100
1855
+ value: 87.958
1856
+ - type: recall_at_1000
1857
+ value: 97.882
1858
+ - type: recall_at_3
1859
+ value: 48.394
1860
+ - type: recall_at_5
1861
+ value: 56.101
1862
+ - task:
1863
+ type: Retrieval
1864
+ dataset:
1865
+ type: mteb/hotpotqa
1866
+ name: MTEB HotpotQA
1867
+ config: default
1868
+ split: test
1869
+ revision: ab518f4d6fcca38d87c25209f94beba119d02014
1870
+ metrics:
1871
+ - type: map_at_1
1872
+ value: 43.72
1873
+ - type: map_at_10
1874
+ value: 71.905
1875
+ - type: map_at_100
1876
+ value: 72.685
1877
+ - type: map_at_1000
1878
+ value: 72.72800000000001
1879
+ - type: map_at_3
1880
+ value: 68.538
1881
+ - type: map_at_5
1882
+ value: 70.675
1883
+ - type: mrr_at_1
1884
+ value: 87.441
1885
+ - type: mrr_at_10
1886
+ value: 91.432
1887
+ - type: mrr_at_100
1888
+ value: 91.512
1889
+ - type: mrr_at_1000
1890
+ value: 91.513
1891
+ - type: mrr_at_3
1892
+ value: 90.923
1893
+ - type: mrr_at_5
1894
+ value: 91.252
1895
+ - type: ndcg_at_1
1896
+ value: 87.441
1897
+ - type: ndcg_at_10
1898
+ value: 79.212
1899
+ - type: ndcg_at_100
1900
+ value: 81.694
1901
+ - type: ndcg_at_1000
1902
+ value: 82.447
1903
+ - type: ndcg_at_3
1904
+ value: 74.746
1905
+ - type: ndcg_at_5
1906
+ value: 77.27199999999999
1907
+ - type: precision_at_1
1908
+ value: 87.441
1909
+ - type: precision_at_10
1910
+ value: 16.42
1911
+ - type: precision_at_100
1912
+ value: 1.833
1913
+ - type: precision_at_1000
1914
+ value: 0.193
1915
+ - type: precision_at_3
1916
+ value: 48.184
1917
+ - type: precision_at_5
1918
+ value: 30.897999999999996
1919
+ - type: recall_at_1
1920
+ value: 43.72
1921
+ - type: recall_at_10
1922
+ value: 82.1
1923
+ - type: recall_at_100
1924
+ value: 91.62700000000001
1925
+ - type: recall_at_1000
1926
+ value: 96.556
1927
+ - type: recall_at_3
1928
+ value: 72.275
1929
+ - type: recall_at_5
1930
+ value: 77.24499999999999
1931
+ - task:
1932
+ type: Classification
1933
+ dataset:
1934
+ type: C-MTEB/IFlyTek-classification
1935
+ name: MTEB IFlyTek
1936
+ config: default
1937
+ split: validation
1938
+ revision: 421605374b29664c5fc098418fe20ada9bd55f8a
1939
+ metrics:
1940
+ - type: accuracy
1941
+ value: 54.520969603693736
1942
+ - type: f1
1943
+ value: 42.359043311419626
1944
+ - task:
1945
+ type: Classification
1946
+ dataset:
1947
+ type: mteb/imdb
1948
+ name: MTEB ImdbClassification
1949
+ config: default
1950
+ split: test
1951
+ revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7
1952
+ metrics:
1953
+ - type: accuracy
1954
+ value: 96.72559999999999
1955
+ - type: ap
1956
+ value: 95.01759461773742
1957
+ - type: f1
1958
+ value: 96.72429945397575
1959
+ - task:
1960
+ type: Classification
1961
+ dataset:
1962
+ type: C-MTEB/JDReview-classification
1963
+ name: MTEB JDReview
1964
+ config: default
1965
+ split: test
1966
+ revision: b7c64bd89eb87f8ded463478346f76731f07bf8b
1967
+ metrics:
1968
+ - type: accuracy
1969
+ value: 90.1688555347092
1970
+ - type: ap
1971
+ value: 63.36583667477521
1972
+ - type: f1
1973
+ value: 85.6845016521436
1974
+ - task:
1975
+ type: STS
1976
+ dataset:
1977
+ type: C-MTEB/LCQMC
1978
+ name: MTEB LCQMC
1979
+ config: default
1980
+ split: test
1981
+ revision: 17f9b096f80380fce5ed12a9be8be7784b337daf
1982
+ metrics:
1983
+ - type: cos_sim_pearson
1984
+ value: 67.35114066823127
1985
+ - type: cos_sim_spearman
1986
+ value: 72.98875207056305
1987
+ - type: euclidean_pearson
1988
+ value: 71.45620183630378
1989
+ - type: euclidean_spearman
1990
+ value: 72.98875207022671
1991
+ - type: manhattan_pearson
1992
+ value: 71.3845159780333
1993
+ - type: manhattan_spearman
1994
+ value: 72.92710990543166
1995
+ - task:
1996
+ type: Reranking
1997
+ dataset:
1998
+ type: C-MTEB/Mmarco-reranking
1999
+ name: MTEB MMarcoReranking
2000
+ config: default
2001
+ split: dev
2002
+ revision: 8e0c766dbe9e16e1d221116a3f36795fbade07f6
2003
+ metrics:
2004
+ - type: map
2005
+ value: 32.68592539803807
2006
+ - type: mrr
2007
+ value: 31.58968253968254
2008
+ - task:
2009
+ type: Retrieval
2010
+ dataset:
2011
+ type: C-MTEB/MMarcoRetrieval
2012
+ name: MTEB MMarcoRetrieval
2013
+ config: default
2014
+ split: dev
2015
+ revision: 539bbde593d947e2a124ba72651aafc09eb33fc2
2016
+ metrics:
2017
+ - type: map_at_1
2018
+ value: 71.242
2019
+ - type: map_at_10
2020
+ value: 80.01
2021
+ - type: map_at_100
2022
+ value: 80.269
2023
+ - type: map_at_1000
2024
+ value: 80.276
2025
+ - type: map_at_3
2026
+ value: 78.335
2027
+ - type: map_at_5
2028
+ value: 79.471
2029
+ - type: mrr_at_1
2030
+ value: 73.668
2031
+ - type: mrr_at_10
2032
+ value: 80.515
2033
+ - type: mrr_at_100
2034
+ value: 80.738
2035
+ - type: mrr_at_1000
2036
+ value: 80.744
2037
+ - type: mrr_at_3
2038
+ value: 79.097
2039
+ - type: mrr_at_5
2040
+ value: 80.045
2041
+ - type: ndcg_at_1
2042
+ value: 73.668
2043
+ - type: ndcg_at_10
2044
+ value: 83.357
2045
+ - type: ndcg_at_100
2046
+ value: 84.442
2047
+ - type: ndcg_at_1000
2048
+ value: 84.619
2049
+ - type: ndcg_at_3
2050
+ value: 80.286
2051
+ - type: ndcg_at_5
2052
+ value: 82.155
2053
+ - type: precision_at_1
2054
+ value: 73.668
2055
+ - type: precision_at_10
2056
+ value: 9.905
2057
+ - type: precision_at_100
2058
+ value: 1.043
2059
+ - type: precision_at_1000
2060
+ value: 0.106
2061
+ - type: precision_at_3
2062
+ value: 30.024
2063
+ - type: precision_at_5
2064
+ value: 19.017
2065
+ - type: recall_at_1
2066
+ value: 71.242
2067
+ - type: recall_at_10
2068
+ value: 93.11
2069
+ - type: recall_at_100
2070
+ value: 97.85000000000001
2071
+ - type: recall_at_1000
2072
+ value: 99.21900000000001
2073
+ - type: recall_at_3
2074
+ value: 85.137
2075
+ - type: recall_at_5
2076
+ value: 89.548
2077
+ - task:
2078
+ type: Retrieval
2079
+ dataset:
2080
+ type: mteb/msmarco
2081
+ name: MTEB MSMARCO
2082
+ config: default
2083
+ split: dev
2084
+ revision: c5a29a104738b98a9e76336939199e264163d4a0
2085
+ metrics:
2086
+ - type: map_at_1
2087
+ value: 22.006999999999998
2088
+ - type: map_at_10
2089
+ value: 34.994
2090
+ - type: map_at_100
2091
+ value: 36.183
2092
+ - type: map_at_1000
2093
+ value: 36.227
2094
+ - type: map_at_3
2095
+ value: 30.75
2096
+ - type: map_at_5
2097
+ value: 33.155
2098
+ - type: mrr_at_1
2099
+ value: 22.679
2100
+ - type: mrr_at_10
2101
+ value: 35.619
2102
+ - type: mrr_at_100
2103
+ value: 36.732
2104
+ - type: mrr_at_1000
2105
+ value: 36.77
2106
+ - type: mrr_at_3
2107
+ value: 31.44
2108
+ - type: mrr_at_5
2109
+ value: 33.811
2110
+ - type: ndcg_at_1
2111
+ value: 22.679
2112
+ - type: ndcg_at_10
2113
+ value: 42.376000000000005
2114
+ - type: ndcg_at_100
2115
+ value: 48.001
2116
+ - type: ndcg_at_1000
2117
+ value: 49.059999999999995
2118
+ - type: ndcg_at_3
2119
+ value: 33.727000000000004
2120
+ - type: ndcg_at_5
2121
+ value: 38.013000000000005
2122
+ - type: precision_at_1
2123
+ value: 22.679
2124
+ - type: precision_at_10
2125
+ value: 6.815
2126
+ - type: precision_at_100
2127
+ value: 0.962
2128
+ - type: precision_at_1000
2129
+ value: 0.105
2130
+ - type: precision_at_3
2131
+ value: 14.441
2132
+ - type: precision_at_5
2133
+ value: 10.817
2134
+ - type: recall_at_1
2135
+ value: 22.006999999999998
2136
+ - type: recall_at_10
2137
+ value: 65.158
2138
+ - type: recall_at_100
2139
+ value: 90.997
2140
+ - type: recall_at_1000
2141
+ value: 98.996
2142
+ - type: recall_at_3
2143
+ value: 41.646
2144
+ - type: recall_at_5
2145
+ value: 51.941
2146
+ - task:
2147
+ type: Classification
2148
+ dataset:
2149
+ type: mteb/mtop_domain
2150
+ name: MTEB MTOPDomainClassification (en)
2151
+ config: en
2152
+ split: test
2153
+ revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
2154
+ metrics:
2155
+ - type: accuracy
2156
+ value: 97.55129958960327
2157
+ - type: f1
2158
+ value: 97.43464802675416
2159
+ - task:
2160
+ type: Classification
2161
+ dataset:
2162
+ type: mteb/mtop_intent
2163
+ name: MTEB MTOPIntentClassification (en)
2164
+ config: en
2165
+ split: test
2166
+ revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
2167
+ metrics:
2168
+ - type: accuracy
2169
+ value: 90.4719562243502
2170
+ - type: f1
2171
+ value: 70.76460034443902
2172
+ - task:
2173
+ type: Classification
2174
+ dataset:
2175
+ type: mteb/amazon_massive_intent
2176
+ name: MTEB MassiveIntentClassification (en)
2177
+ config: en
2178
+ split: test
2179
+ revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
2180
+ metrics:
2181
+ - type: accuracy
2182
+ value: 83.49024882313383
2183
+ - type: f1
2184
+ value: 81.44067057564666
2185
+ - task:
2186
+ type: Classification
2187
+ dataset:
2188
+ type: mteb/amazon_massive_intent
2189
+ name: MTEB MassiveIntentClassification (zh-CN)
2190
+ config: zh-CN
2191
+ split: test
2192
+ revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
2193
+ metrics:
2194
+ - type: accuracy
2195
+ value: 79.88231338264963
2196
+ - type: f1
2197
+ value: 77.13536609019927
2198
+ - task:
2199
+ type: Classification
2200
+ dataset:
2201
+ type: mteb/amazon_massive_scenario
2202
+ name: MTEB MassiveScenarioClassification (en)
2203
+ config: en
2204
+ split: test
2205
+ revision: 7d571f92784cd94a019292a1f45445077d0ef634
2206
+ metrics:
2207
+ - type: accuracy
2208
+ value: 87.23268325487558
2209
+ - type: f1
2210
+ value: 86.36737921996752
2211
+ - task:
2212
+ type: Classification
2213
+ dataset:
2214
+ type: mteb/amazon_massive_scenario
2215
+ name: MTEB MassiveScenarioClassification (zh-CN)
2216
+ config: zh-CN
2217
+ split: test
2218
+ revision: 7d571f92784cd94a019292a1f45445077d0ef634
2219
+ metrics:
2220
+ - type: accuracy
2221
+ value: 84.50571620712844
2222
+ - type: f1
2223
+ value: 83.4128768262944
2224
+ - task:
2225
+ type: Retrieval
2226
+ dataset:
2227
+ type: C-MTEB/MedicalRetrieval
2228
+ name: MTEB MedicalRetrieval
2229
+ config: default
2230
+ split: dev
2231
+ revision: 2039188fb5800a9803ba5048df7b76e6fb151fc6
2232
+ metrics:
2233
+ - type: map_at_1
2234
+ value: 56.89999999999999
2235
+ - type: map_at_10
2236
+ value: 63.438
2237
+ - type: map_at_100
2238
+ value: 63.956
2239
+ - type: map_at_1000
2240
+ value: 63.991
2241
+ - type: map_at_3
2242
+ value: 61.983
2243
+ - type: map_at_5
2244
+ value: 62.778
2245
+ - type: mrr_at_1
2246
+ value: 56.99999999999999
2247
+ - type: mrr_at_10
2248
+ value: 63.483000000000004
2249
+ - type: mrr_at_100
2250
+ value: 63.993
2251
+ - type: mrr_at_1000
2252
+ value: 64.02799999999999
2253
+ - type: mrr_at_3
2254
+ value: 62.017
2255
+ - type: mrr_at_5
2256
+ value: 62.812
2257
+ - type: ndcg_at_1
2258
+ value: 56.89999999999999
2259
+ - type: ndcg_at_10
2260
+ value: 66.61
2261
+ - type: ndcg_at_100
2262
+ value: 69.387
2263
+ - type: ndcg_at_1000
2264
+ value: 70.327
2265
+ - type: ndcg_at_3
2266
+ value: 63.583999999999996
2267
+ - type: ndcg_at_5
2268
+ value: 65.0
2269
+ - type: precision_at_1
2270
+ value: 56.89999999999999
2271
+ - type: precision_at_10
2272
+ value: 7.66
2273
+ - type: precision_at_100
2274
+ value: 0.902
2275
+ - type: precision_at_1000
2276
+ value: 0.098
2277
+ - type: precision_at_3
2278
+ value: 22.733
2279
+ - type: precision_at_5
2280
+ value: 14.32
2281
+ - type: recall_at_1
2282
+ value: 56.89999999999999
2283
+ - type: recall_at_10
2284
+ value: 76.6
2285
+ - type: recall_at_100
2286
+ value: 90.2
2287
+ - type: recall_at_1000
2288
+ value: 97.6
2289
+ - type: recall_at_3
2290
+ value: 68.2
2291
+ - type: recall_at_5
2292
+ value: 71.6
2293
+ - task:
2294
+ type: Clustering
2295
+ dataset:
2296
+ type: mteb/medrxiv-clustering-p2p
2297
+ name: MTEB MedrxivClusteringP2P
2298
+ config: default
2299
+ split: test
2300
+ revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73
2301
+ metrics:
2302
+ - type: v_measure
2303
+ value: 40.32149153753394
2304
+ - task:
2305
+ type: Clustering
2306
+ dataset:
2307
+ type: mteb/medrxiv-clustering-s2s
2308
+ name: MTEB MedrxivClusteringS2S
2309
+ config: default
2310
+ split: test
2311
+ revision: 35191c8c0dca72d8ff3efcd72aa802307d469663
2312
+ metrics:
2313
+ - type: v_measure
2314
+ value: 39.40319973495386
2315
+ - task:
2316
+ type: Reranking
2317
+ dataset:
2318
+ type: mteb/mind_small
2319
+ name: MTEB MindSmallReranking
2320
+ config: default
2321
+ split: test
2322
+ revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69
2323
+ metrics:
2324
+ - type: map
2325
+ value: 33.9769104898534
2326
+ - type: mrr
2327
+ value: 35.32831430710564
2328
+ - task:
2329
+ type: Classification
2330
+ dataset:
2331
+ type: C-MTEB/MultilingualSentiment-classification
2332
+ name: MTEB MultilingualSentiment
2333
+ config: default
2334
+ split: validation
2335
+ revision: 46958b007a63fdbf239b7672c25d0bea67b5ea1a
2336
+ metrics:
2337
+ - type: accuracy
2338
+ value: 81.80666666666667
2339
+ - type: f1
2340
+ value: 81.83278699395508
2341
+ - task:
2342
+ type: Retrieval
2343
+ dataset:
2344
+ type: mteb/nfcorpus
2345
+ name: MTEB NFCorpus
2346
+ config: default
2347
+ split: test
2348
+ revision: ec0fa4fe99da2ff19ca1214b7966684033a58814
2349
+ metrics:
2350
+ - type: map_at_1
2351
+ value: 6.3
2352
+ - type: map_at_10
2353
+ value: 14.151
2354
+ - type: map_at_100
2355
+ value: 18.455
2356
+ - type: map_at_1000
2357
+ value: 20.186999999999998
2358
+ - type: map_at_3
2359
+ value: 10.023
2360
+ - type: map_at_5
2361
+ value: 11.736
2362
+ - type: mrr_at_1
2363
+ value: 49.536
2364
+ - type: mrr_at_10
2365
+ value: 58.516
2366
+ - type: mrr_at_100
2367
+ value: 59.084
2368
+ - type: mrr_at_1000
2369
+ value: 59.114
2370
+ - type: mrr_at_3
2371
+ value: 56.45
2372
+ - type: mrr_at_5
2373
+ value: 57.642
2374
+ - type: ndcg_at_1
2375
+ value: 47.522999999999996
2376
+ - type: ndcg_at_10
2377
+ value: 38.4
2378
+ - type: ndcg_at_100
2379
+ value: 35.839999999999996
2380
+ - type: ndcg_at_1000
2381
+ value: 44.998
2382
+ - type: ndcg_at_3
2383
+ value: 43.221
2384
+ - type: ndcg_at_5
2385
+ value: 40.784
2386
+ - type: precision_at_1
2387
+ value: 49.536
2388
+ - type: precision_at_10
2389
+ value: 28.977999999999998
2390
+ - type: precision_at_100
2391
+ value: 9.378
2392
+ - type: precision_at_1000
2393
+ value: 2.2769999999999997
2394
+ - type: precision_at_3
2395
+ value: 40.454
2396
+ - type: precision_at_5
2397
+ value: 35.418
2398
+ - type: recall_at_1
2399
+ value: 6.3
2400
+ - type: recall_at_10
2401
+ value: 19.085
2402
+ - type: recall_at_100
2403
+ value: 38.18
2404
+ - type: recall_at_1000
2405
+ value: 71.219
2406
+ - type: recall_at_3
2407
+ value: 11.17
2408
+ - type: recall_at_5
2409
+ value: 13.975999999999999
2410
+ - task:
2411
+ type: Retrieval
2412
+ dataset:
2413
+ type: mteb/nq
2414
+ name: MTEB NQ
2415
+ config: default
2416
+ split: test
2417
+ revision: b774495ed302d8c44a3a7ea25c90dbce03968f31
2418
+ metrics:
2419
+ - type: map_at_1
2420
+ value: 43.262
2421
+ - type: map_at_10
2422
+ value: 60.387
2423
+ - type: map_at_100
2424
+ value: 61.102000000000004
2425
+ - type: map_at_1000
2426
+ value: 61.111000000000004
2427
+ - type: map_at_3
2428
+ value: 56.391999999999996
2429
+ - type: map_at_5
2430
+ value: 58.916000000000004
2431
+ - type: mrr_at_1
2432
+ value: 48.725
2433
+ - type: mrr_at_10
2434
+ value: 62.812999999999995
2435
+ - type: mrr_at_100
2436
+ value: 63.297000000000004
2437
+ - type: mrr_at_1000
2438
+ value: 63.304
2439
+ - type: mrr_at_3
2440
+ value: 59.955999999999996
2441
+ - type: mrr_at_5
2442
+ value: 61.785999999999994
2443
+ - type: ndcg_at_1
2444
+ value: 48.696
2445
+ - type: ndcg_at_10
2446
+ value: 67.743
2447
+ - type: ndcg_at_100
2448
+ value: 70.404
2449
+ - type: ndcg_at_1000
2450
+ value: 70.60600000000001
2451
+ - type: ndcg_at_3
2452
+ value: 60.712999999999994
2453
+ - type: ndcg_at_5
2454
+ value: 64.693
2455
+ - type: precision_at_1
2456
+ value: 48.696
2457
+ - type: precision_at_10
2458
+ value: 10.513
2459
+ - type: precision_at_100
2460
+ value: 1.196
2461
+ - type: precision_at_1000
2462
+ value: 0.121
2463
+ - type: precision_at_3
2464
+ value: 27.221
2465
+ - type: precision_at_5
2466
+ value: 18.701999999999998
2467
+ - type: recall_at_1
2468
+ value: 43.262
2469
+ - type: recall_at_10
2470
+ value: 87.35300000000001
2471
+ - type: recall_at_100
2472
+ value: 98.31299999999999
2473
+ - type: recall_at_1000
2474
+ value: 99.797
2475
+ - type: recall_at_3
2476
+ value: 69.643
2477
+ - type: recall_at_5
2478
+ value: 78.645
2479
+ - task:
2480
+ type: PairClassification
2481
+ dataset:
2482
+ type: C-MTEB/OCNLI
2483
+ name: MTEB Ocnli
2484
+ config: default
2485
+ split: validation
2486
+ revision: 66e76a618a34d6d565d5538088562851e6daa7ec
2487
+ metrics:
2488
+ - type: cos_sim_accuracy
2489
+ value: 72.65836491608013
2490
+ - type: cos_sim_ap
2491
+ value: 78.75807247519593
2492
+ - type: cos_sim_f1
2493
+ value: 74.84662576687117
2494
+ - type: cos_sim_precision
2495
+ value: 63.97003745318352
2496
+ - type: cos_sim_recall
2497
+ value: 90.17951425554382
2498
+ - type: dot_accuracy
2499
+ value: 72.65836491608013
2500
+ - type: dot_ap
2501
+ value: 78.75807247519593
2502
+ - type: dot_f1
2503
+ value: 74.84662576687117
2504
+ - type: dot_precision
2505
+ value: 63.97003745318352
2506
+ - type: dot_recall
2507
+ value: 90.17951425554382
2508
+ - type: euclidean_accuracy
2509
+ value: 72.65836491608013
2510
+ - type: euclidean_ap
2511
+ value: 78.75807247519593
2512
+ - type: euclidean_f1
2513
+ value: 74.84662576687117
2514
+ - type: euclidean_precision
2515
+ value: 63.97003745318352
2516
+ - type: euclidean_recall
2517
+ value: 90.17951425554382
2518
+ - type: manhattan_accuracy
2519
+ value: 72.00866269626421
2520
+ - type: manhattan_ap
2521
+ value: 78.34663376353235
2522
+ - type: manhattan_f1
2523
+ value: 74.13234613604813
2524
+ - type: manhattan_precision
2525
+ value: 65.98023064250413
2526
+ - type: manhattan_recall
2527
+ value: 84.58289334741288
2528
+ - type: max_accuracy
2529
+ value: 72.65836491608013
2530
+ - type: max_ap
2531
+ value: 78.75807247519593
2532
+ - type: max_f1
2533
+ value: 74.84662576687117
2534
+ - task:
2535
+ type: Classification
2536
+ dataset:
2537
+ type: C-MTEB/OnlineShopping-classification
2538
+ name: MTEB OnlineShopping
2539
+ config: default
2540
+ split: test
2541
+ revision: e610f2ebd179a8fda30ae534c3878750a96db120
2542
+ metrics:
2543
+ - type: accuracy
2544
+ value: 94.46999999999998
2545
+ - type: ap
2546
+ value: 93.56401511160975
2547
+ - type: f1
2548
+ value: 94.46692790889986
2549
+ - task:
2550
+ type: STS
2551
+ dataset:
2552
+ type: C-MTEB/PAWSX
2553
+ name: MTEB PAWSX
2554
+ config: default
2555
+ split: test
2556
+ revision: 9c6a90e430ac22b5779fb019a23e820b11a8b5e1
2557
+ metrics:
2558
+ - type: cos_sim_pearson
2559
+ value: 46.851404503762474
2560
+ - type: cos_sim_spearman
2561
+ value: 52.74603680597415
2562
+ - type: euclidean_pearson
2563
+ value: 51.596358967977295
2564
+ - type: euclidean_spearman
2565
+ value: 52.74603680597415
2566
+ - type: manhattan_pearson
2567
+ value: 51.81838023379299
2568
+ - type: manhattan_spearman
2569
+ value: 52.79611669731429
2570
+ - task:
2571
+ type: STS
2572
+ dataset:
2573
+ type: C-MTEB/QBQTC
2574
+ name: MTEB QBQTC
2575
+ config: default
2576
+ split: test
2577
+ revision: 790b0510dc52b1553e8c49f3d2afb48c0e5c48b7
2578
+ metrics:
2579
+ - type: cos_sim_pearson
2580
+ value: 31.928376136347016
2581
+ - type: cos_sim_spearman
2582
+ value: 34.38497204533162
2583
+ - type: euclidean_pearson
2584
+ value: 32.658432953090674
2585
+ - type: euclidean_spearman
2586
+ value: 34.38497204533162
2587
+ - type: manhattan_pearson
2588
+ value: 32.887190283203054
2589
+ - type: manhattan_spearman
2590
+ value: 34.69496960849327
2591
+ - task:
2592
+ type: Retrieval
2593
+ dataset:
2594
+ type: mteb/quora
2595
+ name: MTEB QuoraRetrieval
2596
+ config: default
2597
+ split: test
2598
+ revision: None
2599
+ metrics:
2600
+ - type: map_at_1
2601
+ value: 69.952
2602
+ - type: map_at_10
2603
+ value: 84.134
2604
+ - type: map_at_100
2605
+ value: 84.795
2606
+ - type: map_at_1000
2607
+ value: 84.809
2608
+ - type: map_at_3
2609
+ value: 81.085
2610
+ - type: map_at_5
2611
+ value: 82.976
2612
+ - type: mrr_at_1
2613
+ value: 80.56
2614
+ - type: mrr_at_10
2615
+ value: 87.105
2616
+ - type: mrr_at_100
2617
+ value: 87.20700000000001
2618
+ - type: mrr_at_1000
2619
+ value: 87.208
2620
+ - type: mrr_at_3
2621
+ value: 86.118
2622
+ - type: mrr_at_5
2623
+ value: 86.79299999999999
2624
+ - type: ndcg_at_1
2625
+ value: 80.57
2626
+ - type: ndcg_at_10
2627
+ value: 88.047
2628
+ - type: ndcg_at_100
2629
+ value: 89.266
2630
+ - type: ndcg_at_1000
2631
+ value: 89.34299999999999
2632
+ - type: ndcg_at_3
2633
+ value: 85.052
2634
+ - type: ndcg_at_5
2635
+ value: 86.68299999999999
2636
+ - type: precision_at_1
2637
+ value: 80.57
2638
+ - type: precision_at_10
2639
+ value: 13.439
2640
+ - type: precision_at_100
2641
+ value: 1.536
2642
+ - type: precision_at_1000
2643
+ value: 0.157
2644
+ - type: precision_at_3
2645
+ value: 37.283
2646
+ - type: precision_at_5
2647
+ value: 24.558
2648
+ - type: recall_at_1
2649
+ value: 69.952
2650
+ - type: recall_at_10
2651
+ value: 95.599
2652
+ - type: recall_at_100
2653
+ value: 99.67099999999999
2654
+ - type: recall_at_1000
2655
+ value: 99.983
2656
+ - type: recall_at_3
2657
+ value: 87.095
2658
+ - type: recall_at_5
2659
+ value: 91.668
2660
+ - task:
2661
+ type: Clustering
2662
+ dataset:
2663
+ type: mteb/reddit-clustering
2664
+ name: MTEB RedditClustering
2665
+ config: default
2666
+ split: test
2667
+ revision: 24640382cdbf8abc73003fb0fa6d111a705499eb
2668
+ metrics:
2669
+ - type: v_measure
2670
+ value: 70.12802769698337
2671
+ - task:
2672
+ type: Clustering
2673
+ dataset:
2674
+ type: mteb/reddit-clustering-p2p
2675
+ name: MTEB RedditClusteringP2P
2676
+ config: default
2677
+ split: test
2678
+ revision: 282350215ef01743dc01b456c7f5241fa8937f16
2679
+ metrics:
2680
+ - type: v_measure
2681
+ value: 71.19047621740276
2682
+ - task:
2683
+ type: Retrieval
2684
+ dataset:
2685
+ type: mteb/scidocs
2686
+ name: MTEB SCIDOCS
2687
+ config: default
2688
+ split: test
2689
+ revision: None
2690
+ metrics:
2691
+ - type: map_at_1
2692
+ value: 6.208
2693
+ - type: map_at_10
2694
+ value: 17.036
2695
+ - type: map_at_100
2696
+ value: 20.162
2697
+ - type: map_at_1000
2698
+ value: 20.552
2699
+ - type: map_at_3
2700
+ value: 11.591999999999999
2701
+ - type: map_at_5
2702
+ value: 14.349
2703
+ - type: mrr_at_1
2704
+ value: 30.599999999999998
2705
+ - type: mrr_at_10
2706
+ value: 43.325
2707
+ - type: mrr_at_100
2708
+ value: 44.281
2709
+ - type: mrr_at_1000
2710
+ value: 44.31
2711
+ - type: mrr_at_3
2712
+ value: 39.300000000000004
2713
+ - type: mrr_at_5
2714
+ value: 41.730000000000004
2715
+ - type: ndcg_at_1
2716
+ value: 30.599999999999998
2717
+ - type: ndcg_at_10
2718
+ value: 27.378000000000004
2719
+ - type: ndcg_at_100
2720
+ value: 37.768
2721
+ - type: ndcg_at_1000
2722
+ value: 43.275000000000006
2723
+ - type: ndcg_at_3
2724
+ value: 25.167
2725
+ - type: ndcg_at_5
2726
+ value: 22.537
2727
+ - type: precision_at_1
2728
+ value: 30.599999999999998
2729
+ - type: precision_at_10
2730
+ value: 14.46
2731
+ - type: precision_at_100
2732
+ value: 2.937
2733
+ - type: precision_at_1000
2734
+ value: 0.424
2735
+ - type: precision_at_3
2736
+ value: 23.666999999999998
2737
+ - type: precision_at_5
2738
+ value: 20.14
2739
+ - type: recall_at_1
2740
+ value: 6.208
2741
+ - type: recall_at_10
2742
+ value: 29.29
2743
+ - type: recall_at_100
2744
+ value: 59.565
2745
+ - type: recall_at_1000
2746
+ value: 85.963
2747
+ - type: recall_at_3
2748
+ value: 14.407
2749
+ - type: recall_at_5
2750
+ value: 20.412
2751
+ - task:
2752
+ type: STS
2753
+ dataset:
2754
+ type: mteb/sickr-sts
2755
+ name: MTEB SICK-R
2756
+ config: default
2757
+ split: test
2758
+ revision: a6ea5a8cab320b040a23452cc28066d9beae2cee
2759
+ metrics:
2760
+ - type: cos_sim_pearson
2761
+ value: 82.65489797062479
2762
+ - type: cos_sim_spearman
2763
+ value: 75.34808277034776
2764
+ - type: euclidean_pearson
2765
+ value: 79.28097508609059
2766
+ - type: euclidean_spearman
2767
+ value: 75.3480824481771
2768
+ - type: manhattan_pearson
2769
+ value: 78.83529262858895
2770
+ - type: manhattan_spearman
2771
+ value: 74.96318170787025
2772
+ - task:
2773
+ type: STS
2774
+ dataset:
2775
+ type: mteb/sts12-sts
2776
+ name: MTEB STS12
2777
+ config: default
2778
+ split: test
2779
+ revision: a0d554a64d88156834ff5ae9920b964011b16384
2780
+ metrics:
2781
+ - type: cos_sim_pearson
2782
+ value: 85.06920163624117
2783
+ - type: cos_sim_spearman
2784
+ value: 77.24549887905519
2785
+ - type: euclidean_pearson
2786
+ value: 85.58740280635266
2787
+ - type: euclidean_spearman
2788
+ value: 77.24652170306867
2789
+ - type: manhattan_pearson
2790
+ value: 85.77917470895854
2791
+ - type: manhattan_spearman
2792
+ value: 77.54426264008778
2793
+ - task:
2794
+ type: STS
2795
+ dataset:
2796
+ type: mteb/sts13-sts
2797
+ name: MTEB STS13
2798
+ config: default
2799
+ split: test
2800
+ revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca
2801
+ metrics:
2802
+ - type: cos_sim_pearson
2803
+ value: 80.9762185094084
2804
+ - type: cos_sim_spearman
2805
+ value: 80.98090253728394
2806
+ - type: euclidean_pearson
2807
+ value: 80.88451512135202
2808
+ - type: euclidean_spearman
2809
+ value: 80.98090253728394
2810
+ - type: manhattan_pearson
2811
+ value: 80.7606664599805
2812
+ - type: manhattan_spearman
2813
+ value: 80.87197716950068
2814
+ - task:
2815
+ type: STS
2816
+ dataset:
2817
+ type: mteb/sts14-sts
2818
+ name: MTEB STS14
2819
+ config: default
2820
+ split: test
2821
+ revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375
2822
+ metrics:
2823
+ - type: cos_sim_pearson
2824
+ value: 81.91239166620251
2825
+ - type: cos_sim_spearman
2826
+ value: 76.36798509005328
2827
+ - type: euclidean_pearson
2828
+ value: 80.6393872615655
2829
+ - type: euclidean_spearman
2830
+ value: 76.36798836339655
2831
+ - type: manhattan_pearson
2832
+ value: 80.50765898709096
2833
+ - type: manhattan_spearman
2834
+ value: 76.31958999372227
2835
+ - task:
2836
+ type: STS
2837
+ dataset:
2838
+ type: mteb/sts15-sts
2839
+ name: MTEB STS15
2840
+ config: default
2841
+ split: test
2842
+ revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3
2843
+ metrics:
2844
+ - type: cos_sim_pearson
2845
+ value: 83.68800355225011
2846
+ - type: cos_sim_spearman
2847
+ value: 84.47549220803403
2848
+ - type: euclidean_pearson
2849
+ value: 83.86859896384159
2850
+ - type: euclidean_spearman
2851
+ value: 84.47551564954756
2852
+ - type: manhattan_pearson
2853
+ value: 83.74201103044383
2854
+ - type: manhattan_spearman
2855
+ value: 84.39903759718152
2856
+ - task:
2857
+ type: STS
2858
+ dataset:
2859
+ type: mteb/sts16-sts
2860
+ name: MTEB STS16
2861
+ config: default
2862
+ split: test
2863
+ revision: 4d8694f8f0e0100860b497b999b3dbed754a0513
2864
+ metrics:
2865
+ - type: cos_sim_pearson
2866
+ value: 78.24197302553398
2867
+ - type: cos_sim_spearman
2868
+ value: 79.44526946553684
2869
+ - type: euclidean_pearson
2870
+ value: 79.12747636563053
2871
+ - type: euclidean_spearman
2872
+ value: 79.44526946553684
2873
+ - type: manhattan_pearson
2874
+ value: 78.94407504115144
2875
+ - type: manhattan_spearman
2876
+ value: 79.24858249553934
2877
+ - task:
2878
+ type: STS
2879
+ dataset:
2880
+ type: mteb/sts17-crosslingual-sts
2881
+ name: MTEB STS17 (en-en)
2882
+ config: en-en
2883
+ split: test
2884
+ revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
2885
+ metrics:
2886
+ - type: cos_sim_pearson
2887
+ value: 89.15329071763895
2888
+ - type: cos_sim_spearman
2889
+ value: 88.67251952242073
2890
+ - type: euclidean_pearson
2891
+ value: 89.16908249259637
2892
+ - type: euclidean_spearman
2893
+ value: 88.67251952242073
2894
+ - type: manhattan_pearson
2895
+ value: 89.1279735094785
2896
+ - type: manhattan_spearman
2897
+ value: 88.81731953658254
2898
+ - task:
2899
+ type: STS
2900
+ dataset:
2901
+ type: mteb/sts22-crosslingual-sts
2902
+ name: MTEB STS22 (en)
2903
+ config: en
2904
+ split: test
2905
+ revision: eea2b4fe26a775864c896887d910b76a8098ad3f
2906
+ metrics:
2907
+ - type: cos_sim_pearson
2908
+ value: 69.44962535524695
2909
+ - type: cos_sim_spearman
2910
+ value: 71.75861316291065
2911
+ - type: euclidean_pearson
2912
+ value: 72.42347748883483
2913
+ - type: euclidean_spearman
2914
+ value: 71.75861316291065
2915
+ - type: manhattan_pearson
2916
+ value: 72.57545073534365
2917
+ - type: manhattan_spearman
2918
+ value: 71.90087671205625
2919
+ - task:
2920
+ type: STS
2921
+ dataset:
2922
+ type: mteb/sts22-crosslingual-sts
2923
+ name: MTEB STS22 (zh)
2924
+ config: zh
2925
+ split: test
2926
+ revision: eea2b4fe26a775864c896887d910b76a8098ad3f
2927
+ metrics:
2928
+ - type: cos_sim_pearson
2929
+ value: 68.9945443484093
2930
+ - type: cos_sim_spearman
2931
+ value: 71.46807157842791
2932
+ - type: euclidean_pearson
2933
+ value: 69.24911748374225
2934
+ - type: euclidean_spearman
2935
+ value: 69.46807157842791
2936
+ - type: manhattan_pearson
2937
+ value: 69.65580071876552
2938
+ - type: manhattan_spearman
2939
+ value: 69.68775795734852
2940
+ - task:
2941
+ type: STS
2942
+ dataset:
2943
+ type: C-MTEB/STSB
2944
+ name: MTEB STSB
2945
+ config: default
2946
+ split: test
2947
+ revision: 0cde68302b3541bb8b3c340dc0644b0b745b3dc0
2948
+ metrics:
2949
+ - type: cos_sim_pearson
2950
+ value: 77.39283860361535
2951
+ - type: cos_sim_spearman
2952
+ value: 77.14577975930179
2953
+ - type: euclidean_pearson
2954
+ value: 76.64560889817044
2955
+ - type: euclidean_spearman
2956
+ value: 77.14577975930179
2957
+ - type: manhattan_pearson
2958
+ value: 76.82848456242104
2959
+ - type: manhattan_spearman
2960
+ value: 77.37708521460667
2961
+ - task:
2962
+ type: STS
2963
+ dataset:
2964
+ type: mteb/stsbenchmark-sts
2965
+ name: MTEB STSBenchmark
2966
+ config: default
2967
+ split: test
2968
+ revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831
2969
+ metrics:
2970
+ - type: cos_sim_pearson
2971
+ value: 84.14036697885552
2972
+ - type: cos_sim_spearman
2973
+ value: 83.10901632378086
2974
+ - type: euclidean_pearson
2975
+ value: 83.59991244380554
2976
+ - type: euclidean_spearman
2977
+ value: 83.10901632378086
2978
+ - type: manhattan_pearson
2979
+ value: 83.56632266895113
2980
+ - type: manhattan_spearman
2981
+ value: 83.17610542379353
2982
+ - task:
2983
+ type: Reranking
2984
+ dataset:
2985
+ type: mteb/scidocs-reranking
2986
+ name: MTEB SciDocsRR
2987
+ config: default
2988
+ split: test
2989
+ revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab
2990
+ metrics:
2991
+ - type: map
2992
+ value: 88.98026856845443
2993
+ - type: mrr
2994
+ value: 96.80987494712984
2995
+ - task:
2996
+ type: Retrieval
2997
+ dataset:
2998
+ type: mteb/scifact
2999
+ name: MTEB SciFact
3000
+ config: default
3001
+ split: test
3002
+ revision: 0228b52cf27578f30900b9e5271d331663a030d7
3003
+ metrics:
3004
+ - type: map_at_1
3005
+ value: 41.661
3006
+ - type: map_at_10
3007
+ value: 55.492
3008
+ - type: map_at_100
3009
+ value: 56.237
3010
+ - type: map_at_1000
3011
+ value: 56.255
3012
+ - type: map_at_3
3013
+ value: 51.05
3014
+ - type: map_at_5
3015
+ value: 54.01200000000001
3016
+ - type: mrr_at_1
3017
+ value: 44.0
3018
+ - type: mrr_at_10
3019
+ value: 56.443
3020
+ - type: mrr_at_100
3021
+ value: 57.13700000000001
3022
+ - type: mrr_at_1000
3023
+ value: 57.152
3024
+ - type: mrr_at_3
3025
+ value: 52.944
3026
+ - type: mrr_at_5
3027
+ value: 55.37800000000001
3028
+ - type: ndcg_at_1
3029
+ value: 44.0
3030
+ - type: ndcg_at_10
3031
+ value: 62.312999999999995
3032
+ - type: ndcg_at_100
3033
+ value: 65.63900000000001
3034
+ - type: ndcg_at_1000
3035
+ value: 66.019
3036
+ - type: ndcg_at_3
3037
+ value: 54.67999999999999
3038
+ - type: ndcg_at_5
3039
+ value: 59.284000000000006
3040
+ - type: precision_at_1
3041
+ value: 44.0
3042
+ - type: precision_at_10
3043
+ value: 9.367
3044
+ - type: precision_at_100
3045
+ value: 1.0999999999999999
3046
+ - type: precision_at_1000
3047
+ value: 0.11299999999999999
3048
+ - type: precision_at_3
3049
+ value: 22.778000000000002
3050
+ - type: precision_at_5
3051
+ value: 16.467000000000002
3052
+ - type: recall_at_1
3053
+ value: 41.661
3054
+ - type: recall_at_10
3055
+ value: 82.306
3056
+ - type: recall_at_100
3057
+ value: 97.167
3058
+ - type: recall_at_1000
3059
+ value: 100.0
3060
+ - type: recall_at_3
3061
+ value: 62.461
3062
+ - type: recall_at_5
3063
+ value: 73.411
3064
+ - task:
3065
+ type: PairClassification
3066
+ dataset:
3067
+ type: mteb/sprintduplicatequestions-pairclassification
3068
+ name: MTEB SprintDuplicateQuestions
3069
+ config: default
3070
+ split: test
3071
+ revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46
3072
+ metrics:
3073
+ - type: cos_sim_accuracy
3074
+ value: 99.90693069306931
3075
+ - type: cos_sim_ap
3076
+ value: 97.86562522779887
3077
+ - type: cos_sim_f1
3078
+ value: 95.27162977867204
3079
+ - type: cos_sim_precision
3080
+ value: 95.8502024291498
3081
+ - type: cos_sim_recall
3082
+ value: 94.69999999999999
3083
+ - type: dot_accuracy
3084
+ value: 99.90693069306931
3085
+ - type: dot_ap
3086
+ value: 97.86562522779887
3087
+ - type: dot_f1
3088
+ value: 95.27162977867204
3089
+ - type: dot_precision
3090
+ value: 95.8502024291498
3091
+ - type: dot_recall
3092
+ value: 94.69999999999999
3093
+ - type: euclidean_accuracy
3094
+ value: 99.90693069306931
3095
+ - type: euclidean_ap
3096
+ value: 97.86562522779887
3097
+ - type: euclidean_f1
3098
+ value: 95.27162977867204
3099
+ - type: euclidean_precision
3100
+ value: 95.8502024291498
3101
+ - type: euclidean_recall
3102
+ value: 94.69999999999999
3103
+ - type: manhattan_accuracy
3104
+ value: 99.90693069306931
3105
+ - type: manhattan_ap
3106
+ value: 97.85527044211135
3107
+ - type: manhattan_f1
3108
+ value: 95.27638190954774
3109
+ - type: manhattan_precision
3110
+ value: 95.75757575757575
3111
+ - type: manhattan_recall
3112
+ value: 94.8
3113
+ - type: max_accuracy
3114
+ value: 99.90693069306931
3115
+ - type: max_ap
3116
+ value: 97.86562522779887
3117
+ - type: max_f1
3118
+ value: 95.27638190954774
3119
+ - task:
3120
+ type: Clustering
3121
+ dataset:
3122
+ type: mteb/stackexchange-clustering
3123
+ name: MTEB StackExchangeClustering
3124
+ config: default
3125
+ split: test
3126
+ revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259
3127
+ metrics:
3128
+ - type: v_measure
3129
+ value: 78.89230351770412
3130
+ - task:
3131
+ type: Clustering
3132
+ dataset:
3133
+ type: mteb/stackexchange-clustering-p2p
3134
+ name: MTEB StackExchangeClusteringP2P
3135
+ config: default
3136
+ split: test
3137
+ revision: 815ca46b2622cec33ccafc3735d572c266efdb44
3138
+ metrics:
3139
+ - type: v_measure
3140
+ value: 47.52328347080355
3141
+ - task:
3142
+ type: Reranking
3143
+ dataset:
3144
+ type: mteb/stackoverflowdupquestions-reranking
3145
+ name: MTEB StackOverflowDupQuestions
3146
+ config: default
3147
+ split: test
3148
+ revision: e185fbe320c72810689fc5848eb6114e1ef5ec69
3149
+ metrics:
3150
+ - type: map
3151
+ value: 57.74702024461137
3152
+ - type: mrr
3153
+ value: 58.88074548001018
3154
+ - task:
3155
+ type: Summarization
3156
+ dataset:
3157
+ type: mteb/summeval
3158
+ name: MTEB SummEval
3159
+ config: default
3160
+ split: test
3161
+ revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c
3162
+ metrics:
3163
+ - type: cos_sim_pearson
3164
+ value: 30.047929797503592
3165
+ - type: cos_sim_spearman
3166
+ value: 29.465371781983567
3167
+ - type: dot_pearson
3168
+ value: 30.047927690552335
3169
+ - type: dot_spearman
3170
+ value: 29.465371781983567
3171
+ - task:
3172
+ type: Reranking
3173
+ dataset:
3174
+ type: C-MTEB/T2Reranking
3175
+ name: MTEB T2Reranking
3176
+ config: default
3177
+ split: dev
3178
+ revision: 76631901a18387f85eaa53e5450019b87ad58ef9
3179
+ metrics:
3180
+ - type: map
3181
+ value: 66.54177017978034
3182
+ - type: mrr
3183
+ value: 76.76094292377299
3184
+ - task:
3185
+ type: Retrieval
3186
+ dataset:
3187
+ type: C-MTEB/T2Retrieval
3188
+ name: MTEB T2Retrieval
3189
+ config: default
3190
+ split: dev
3191
+ revision: 8731a845f1bf500a4f111cf1070785c793d10e64
3192
+ metrics:
3193
+ - type: map_at_1
3194
+ value: 28.608
3195
+ - type: map_at_10
3196
+ value: 81.266
3197
+ - type: map_at_100
3198
+ value: 84.714
3199
+ - type: map_at_1000
3200
+ value: 84.758
3201
+ - type: map_at_3
3202
+ value: 56.967
3203
+ - type: map_at_5
3204
+ value: 70.14
3205
+ - type: mrr_at_1
3206
+ value: 91.881
3207
+ - type: mrr_at_10
3208
+ value: 94.11699999999999
3209
+ - type: mrr_at_100
3210
+ value: 94.178
3211
+ - type: mrr_at_1000
3212
+ value: 94.181
3213
+ - type: mrr_at_3
3214
+ value: 93.772
3215
+ - type: mrr_at_5
3216
+ value: 93.997
3217
+ - type: ndcg_at_1
3218
+ value: 91.881
3219
+ - type: ndcg_at_10
3220
+ value: 87.954
3221
+ - type: ndcg_at_100
3222
+ value: 90.904
3223
+ - type: ndcg_at_1000
3224
+ value: 91.326
3225
+ - type: ndcg_at_3
3226
+ value: 88.838
3227
+ - type: ndcg_at_5
3228
+ value: 87.764
3229
+ - type: precision_at_1
3230
+ value: 91.881
3231
+ - type: precision_at_10
3232
+ value: 43.628
3233
+ - type: precision_at_100
3234
+ value: 5.082
3235
+ - type: precision_at_1000
3236
+ value: 0.518
3237
+ - type: precision_at_3
3238
+ value: 77.62400000000001
3239
+ - type: precision_at_5
3240
+ value: 65.269
3241
+ - type: recall_at_1
3242
+ value: 28.608
3243
+ - type: recall_at_10
3244
+ value: 87.06
3245
+ - type: recall_at_100
3246
+ value: 96.815
3247
+ - type: recall_at_1000
3248
+ value: 98.969
3249
+ - type: recall_at_3
3250
+ value: 58.506
3251
+ - type: recall_at_5
3252
+ value: 73.21600000000001
3253
+ - task:
3254
+ type: Classification
3255
+ dataset:
3256
+ type: C-MTEB/TNews-classification
3257
+ name: MTEB TNews
3258
+ config: default
3259
+ split: validation
3260
+ revision: 317f262bf1e6126357bbe89e875451e4b0938fe4
3261
+ metrics:
3262
+ - type: accuracy
3263
+ value: 56.691999999999986
3264
+ - type: f1
3265
+ value: 54.692084702788065
3266
+ - task:
3267
+ type: Retrieval
3268
+ dataset:
3269
+ type: mteb/trec-covid
3270
+ name: MTEB TRECCOVID
3271
+ config: default
3272
+ split: test
3273
+ revision: None
3274
+ metrics:
3275
+ - type: map_at_1
3276
+ value: 0.181
3277
+ - type: map_at_10
3278
+ value: 1.2
3279
+ - type: map_at_100
3280
+ value: 6.078
3281
+ - type: map_at_1000
3282
+ value: 14.940000000000001
3283
+ - type: map_at_3
3284
+ value: 0.45599999999999996
3285
+ - type: map_at_5
3286
+ value: 0.692
3287
+ - type: mrr_at_1
3288
+ value: 66.0
3289
+ - type: mrr_at_10
3290
+ value: 75.819
3291
+ - type: mrr_at_100
3292
+ value: 76.168
3293
+ - type: mrr_at_1000
3294
+ value: 76.168
3295
+ - type: mrr_at_3
3296
+ value: 72.667
3297
+ - type: mrr_at_5
3298
+ value: 74.86699999999999
3299
+ - type: ndcg_at_1
3300
+ value: 59.0
3301
+ - type: ndcg_at_10
3302
+ value: 52.60399999999999
3303
+ - type: ndcg_at_100
3304
+ value: 38.049
3305
+ - type: ndcg_at_1000
3306
+ value: 38.576
3307
+ - type: ndcg_at_3
3308
+ value: 57.235
3309
+ - type: ndcg_at_5
3310
+ value: 56.147000000000006
3311
+ - type: precision_at_1
3312
+ value: 66.0
3313
+ - type: precision_at_10
3314
+ value: 55.2
3315
+ - type: precision_at_100
3316
+ value: 38.78
3317
+ - type: precision_at_1000
3318
+ value: 16.986
3319
+ - type: precision_at_3
3320
+ value: 62.666999999999994
3321
+ - type: precision_at_5
3322
+ value: 60.8
3323
+ - type: recall_at_1
3324
+ value: 0.181
3325
+ - type: recall_at_10
3326
+ value: 1.471
3327
+ - type: recall_at_100
3328
+ value: 9.748999999999999
3329
+ - type: recall_at_1000
3330
+ value: 37.667
3331
+ - type: recall_at_3
3332
+ value: 0.49300000000000005
3333
+ - type: recall_at_5
3334
+ value: 0.7979999999999999
3335
+ - task:
3336
+ type: Clustering
3337
+ dataset:
3338
+ type: C-MTEB/ThuNewsClusteringP2P
3339
+ name: MTEB ThuNewsClusteringP2P
3340
+ config: default
3341
+ split: test
3342
+ revision: 5798586b105c0434e4f0fe5e767abe619442cf93
3343
+ metrics:
3344
+ - type: v_measure
3345
+ value: 78.68783858143624
3346
+ - task:
3347
+ type: Clustering
3348
+ dataset:
3349
+ type: C-MTEB/ThuNewsClusteringS2S
3350
+ name: MTEB ThuNewsClusteringS2S
3351
+ config: default
3352
+ split: test
3353
+ revision: 8a8b2caeda43f39e13c4bc5bea0f8a667896e10d
3354
+ metrics:
3355
+ - type: v_measure
3356
+ value: 77.04148998956299
3357
+ - task:
3358
+ type: Retrieval
3359
+ dataset:
3360
+ type: mteb/touche2020
3361
+ name: MTEB Touche2020
3362
+ config: default
3363
+ split: test
3364
+ revision: a34f9a33db75fa0cbb21bb5cfc3dae8dc8bec93f
3365
+ metrics:
3366
+ - type: map_at_1
3367
+ value: 1.936
3368
+ - type: map_at_10
3369
+ value: 8.942
3370
+ - type: map_at_100
3371
+ value: 14.475999999999999
3372
+ - type: map_at_1000
3373
+ value: 16.156000000000002
3374
+ - type: map_at_3
3375
+ value: 4.865
3376
+ - type: map_at_5
3377
+ value: 6.367000000000001
3378
+ - type: mrr_at_1
3379
+ value: 26.531
3380
+ - type: mrr_at_10
3381
+ value: 42.846000000000004
3382
+ - type: mrr_at_100
3383
+ value: 43.441
3384
+ - type: mrr_at_1000
3385
+ value: 43.441
3386
+ - type: mrr_at_3
3387
+ value: 36.735
3388
+ - type: mrr_at_5
3389
+ value: 40.510000000000005
3390
+ - type: ndcg_at_1
3391
+ value: 24.490000000000002
3392
+ - type: ndcg_at_10
3393
+ value: 23.262
3394
+ - type: ndcg_at_100
3395
+ value: 34.959
3396
+ - type: ndcg_at_1000
3397
+ value: 47.258
3398
+ - type: ndcg_at_3
3399
+ value: 25.27
3400
+ - type: ndcg_at_5
3401
+ value: 24.246000000000002
3402
+ - type: precision_at_1
3403
+ value: 26.531
3404
+ - type: precision_at_10
3405
+ value: 20.408
3406
+ - type: precision_at_100
3407
+ value: 7.306
3408
+ - type: precision_at_1000
3409
+ value: 1.541
3410
+ - type: precision_at_3
3411
+ value: 26.531
3412
+ - type: precision_at_5
3413
+ value: 24.082
3414
+ - type: recall_at_1
3415
+ value: 1.936
3416
+ - type: recall_at_10
3417
+ value: 15.712000000000002
3418
+ - type: recall_at_100
3419
+ value: 45.451
3420
+ - type: recall_at_1000
3421
+ value: 83.269
3422
+ - type: recall_at_3
3423
+ value: 6.442
3424
+ - type: recall_at_5
3425
+ value: 9.151
3426
+ - task:
3427
+ type: Classification
3428
+ dataset:
3429
+ type: mteb/toxic_conversations_50k
3430
+ name: MTEB ToxicConversationsClassification
3431
+ config: default
3432
+ split: test
3433
+ revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c
3434
+ metrics:
3435
+ - type: accuracy
3436
+ value: 86.564
3437
+ - type: ap
3438
+ value: 34.58766846081731
3439
+ - type: f1
3440
+ value: 72.32759831978161
3441
+ - task:
3442
+ type: Classification
3443
+ dataset:
3444
+ type: mteb/tweet_sentiment_extraction
3445
+ name: MTEB TweetSentimentExtractionClassification
3446
+ config: default
3447
+ split: test
3448
+ revision: d604517c81ca91fe16a244d1248fc021f9ecee7a
3449
+ metrics:
3450
+ - type: accuracy
3451
+ value: 77.80418788907753
3452
+ - type: f1
3453
+ value: 78.1047638421972
3454
+ - task:
3455
+ type: Clustering
3456
+ dataset:
3457
+ type: mteb/twentynewsgroups-clustering
3458
+ name: MTEB TwentyNewsgroupsClustering
3459
+ config: default
3460
+ split: test
3461
+ revision: 6125ec4e24fa026cec8a478383ee943acfbd5449
3462
+ metrics:
3463
+ - type: v_measure
3464
+ value: 59.20888659980063
3465
+ - task:
3466
+ type: PairClassification
3467
+ dataset:
3468
+ type: mteb/twittersemeval2015-pairclassification
3469
+ name: MTEB TwitterSemEval2015
3470
+ config: default
3471
+ split: test
3472
+ revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1
3473
+ metrics:
3474
+ - type: cos_sim_accuracy
3475
+ value: 85.45627943017226
3476
+ - type: cos_sim_ap
3477
+ value: 72.25550061847534
3478
+ - type: cos_sim_f1
3479
+ value: 66.0611487783037
3480
+ - type: cos_sim_precision
3481
+ value: 64.11720884032779
3482
+ - type: cos_sim_recall
3483
+ value: 68.12664907651715
3484
+ - type: dot_accuracy
3485
+ value: 85.45627943017226
3486
+ - type: dot_ap
3487
+ value: 72.25574305366213
3488
+ - type: dot_f1
3489
+ value: 66.0611487783037
3490
+ - type: dot_precision
3491
+ value: 64.11720884032779
3492
+ - type: dot_recall
3493
+ value: 68.12664907651715
3494
+ - type: euclidean_accuracy
3495
+ value: 85.45627943017226
3496
+ - type: euclidean_ap
3497
+ value: 72.2557084446673
3498
+ - type: euclidean_f1
3499
+ value: 66.0611487783037
3500
+ - type: euclidean_precision
3501
+ value: 64.11720884032779
3502
+ - type: euclidean_recall
3503
+ value: 68.12664907651715
3504
+ - type: manhattan_accuracy
3505
+ value: 85.32514752339513
3506
+ - type: manhattan_ap
3507
+ value: 71.52919143472248
3508
+ - type: manhattan_f1
3509
+ value: 65.60288251190322
3510
+ - type: manhattan_precision
3511
+ value: 64.02913840743531
3512
+ - type: manhattan_recall
3513
+ value: 67.25593667546174
3514
+ - type: max_accuracy
3515
+ value: 85.45627943017226
3516
+ - type: max_ap
3517
+ value: 72.25574305366213
3518
+ - type: max_f1
3519
+ value: 66.0611487783037
3520
+ - task:
3521
+ type: PairClassification
3522
+ dataset:
3523
+ type: mteb/twitterurlcorpus-pairclassification
3524
+ name: MTEB TwitterURLCorpus
3525
+ config: default
3526
+ split: test
3527
+ revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf
3528
+ metrics:
3529
+ - type: cos_sim_accuracy
3530
+ value: 88.34167733923235
3531
+ - type: cos_sim_ap
3532
+ value: 84.58587730660244
3533
+ - type: cos_sim_f1
3534
+ value: 77.14170010676287
3535
+ - type: cos_sim_precision
3536
+ value: 73.91181657848324
3537
+ - type: cos_sim_recall
3538
+ value: 80.66676932553126
3539
+ - type: dot_accuracy
3540
+ value: 88.34167733923235
3541
+ - type: dot_ap
3542
+ value: 84.58585083616217
3543
+ - type: dot_f1
3544
+ value: 77.14170010676287
3545
+ - type: dot_precision
3546
+ value: 73.91181657848324
3547
+ - type: dot_recall
3548
+ value: 80.66676932553126
3549
+ - type: euclidean_accuracy
3550
+ value: 88.34167733923235
3551
+ - type: euclidean_ap
3552
+ value: 84.5858781355044
3553
+ - type: euclidean_f1
3554
+ value: 77.14170010676287
3555
+ - type: euclidean_precision
3556
+ value: 73.91181657848324
3557
+ - type: euclidean_recall
3558
+ value: 80.66676932553126
3559
+ - type: manhattan_accuracy
3560
+ value: 88.28152287809989
3561
+ - type: manhattan_ap
3562
+ value: 84.53184837110165
3563
+ - type: manhattan_f1
3564
+ value: 77.13582823915313
3565
+ - type: manhattan_precision
3566
+ value: 74.76156069364161
3567
+ - type: manhattan_recall
3568
+ value: 79.66584539574993
3569
+ - type: max_accuracy
3570
+ value: 88.34167733923235
3571
+ - type: max_ap
3572
+ value: 84.5858781355044
3573
+ - type: max_f1
3574
+ value: 77.14170010676287
3575
+ - task:
3576
+ type: Retrieval
3577
+ dataset:
3578
+ type: C-MTEB/VideoRetrieval
3579
+ name: MTEB VideoRetrieval
3580
+ config: default
3581
+ split: dev
3582
+ revision: 58c2597a5943a2ba48f4668c3b90d796283c5639
3583
+ metrics:
3584
+ - type: map_at_1
3585
+ value: 66.10000000000001
3586
+ - type: map_at_10
3587
+ value: 75.238
3588
+ - type: map_at_100
3589
+ value: 75.559
3590
+ - type: map_at_1000
3591
+ value: 75.565
3592
+ - type: map_at_3
3593
+ value: 73.68299999999999
3594
+ - type: map_at_5
3595
+ value: 74.63300000000001
3596
+ - type: mrr_at_1
3597
+ value: 66.10000000000001
3598
+ - type: mrr_at_10
3599
+ value: 75.238
3600
+ - type: mrr_at_100
3601
+ value: 75.559
3602
+ - type: mrr_at_1000
3603
+ value: 75.565
3604
+ - type: mrr_at_3
3605
+ value: 73.68299999999999
3606
+ - type: mrr_at_5
3607
+ value: 74.63300000000001
3608
+ - type: ndcg_at_1
3609
+ value: 66.10000000000001
3610
+ - type: ndcg_at_10
3611
+ value: 79.25999999999999
3612
+ - type: ndcg_at_100
3613
+ value: 80.719
3614
+ - type: ndcg_at_1000
3615
+ value: 80.862
3616
+ - type: ndcg_at_3
3617
+ value: 76.08200000000001
3618
+ - type: ndcg_at_5
3619
+ value: 77.782
3620
+ - type: precision_at_1
3621
+ value: 66.10000000000001
3622
+ - type: precision_at_10
3623
+ value: 9.17
3624
+ - type: precision_at_100
3625
+ value: 0.983
3626
+ - type: precision_at_1000
3627
+ value: 0.099
3628
+ - type: precision_at_3
3629
+ value: 27.667
3630
+ - type: precision_at_5
3631
+ value: 17.419999999999998
3632
+ - type: recall_at_1
3633
+ value: 66.10000000000001
3634
+ - type: recall_at_10
3635
+ value: 91.7
3636
+ - type: recall_at_100
3637
+ value: 98.3
3638
+ - type: recall_at_1000
3639
+ value: 99.4
3640
+ - type: recall_at_3
3641
+ value: 83.0
3642
+ - type: recall_at_5
3643
+ value: 87.1
3644
+ - task:
3645
+ type: Classification
3646
+ dataset:
3647
+ type: C-MTEB/waimai-classification
3648
+ name: MTEB Waimai
3649
+ config: default
3650
+ split: test
3651
+ revision: 339287def212450dcaa9df8c22bf93e9980c7023
3652
+ metrics:
3653
+ - type: accuracy
3654
+ value: 91.13
3655
+ - type: ap
3656
+ value: 79.55231335947015
3657
+ - type: f1
3658
+ value: 89.63091922203914
3659
  ---
3660
 
3661
  <p align="center">