Initial commit
Browse files- README.md +1 -1
- a2c-PandaReachDense-v2.zip +2 -2
- a2c-PandaReachDense-v2/data +18 -16
- a2c-PandaReachDense-v2/policy.optimizer.pth +2 -2
- a2c-PandaReachDense-v2/policy.pth +2 -2
- config.json +1 -1
- replay.mp4 +0 -0
- results.json +1 -1
- vec_normalize.pkl +1 -1
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: PandaReachDense-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value: -
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: PandaReachDense-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: -0.56 +/- 0.17
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
a2c-PandaReachDense-v2.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4728142948bd9e4df4f73fe55f1cdfe9288347a3dc008b997c007c0f5f0c46c8
|
3 |
+
size 109556
|
a2c-PandaReachDense-v2/data
CHANGED
@@ -11,7 +11,9 @@
|
|
11 |
"verbose": 1,
|
12 |
"policy_kwargs": {
|
13 |
":type:": "<class 'dict'>",
|
14 |
-
":serialized:": "
|
|
|
|
|
15 |
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
16 |
"optimizer_kwargs": {
|
17 |
"alpha": 0.99,
|
@@ -46,19 +48,19 @@
|
|
46 |
"_num_timesteps_at_start": 0,
|
47 |
"seed": null,
|
48 |
"action_noise": null,
|
49 |
-
"start_time":
|
50 |
-
"learning_rate": 0.
|
51 |
"tensorboard_log": null,
|
52 |
"lr_schedule": {
|
53 |
":type:": "<class 'function'>",
|
54 |
-
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/
|
55 |
},
|
56 |
"_last_obs": {
|
57 |
":type:": "<class 'collections.OrderedDict'>",
|
58 |
-
":serialized:": "
|
59 |
-
"achieved_goal": "[[
|
60 |
-
"desired_goal": "[[-
|
61 |
-
"observation": "[[ 0.
|
62 |
},
|
63 |
"_last_episode_starts": {
|
64 |
":type:": "<class 'numpy.ndarray'>",
|
@@ -66,29 +68,29 @@
|
|
66 |
},
|
67 |
"_last_original_obs": {
|
68 |
":type:": "<class 'collections.OrderedDict'>",
|
69 |
-
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////
|
70 |
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
71 |
-
"desired_goal": "[[-
|
72 |
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
73 |
},
|
74 |
"_episode_num": 0,
|
75 |
-
"use_sde":
|
76 |
"sde_sample_freq": -1,
|
77 |
"_current_progress_remaining": 0.0,
|
78 |
"ep_info_buffer": {
|
79 |
":type:": "<class 'collections.deque'>",
|
80 |
-
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////
|
81 |
},
|
82 |
"ep_success_buffer": {
|
83 |
":type:": "<class 'collections.deque'>",
|
84 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
85 |
},
|
86 |
-
"_n_updates":
|
87 |
-
"n_steps":
|
88 |
"gamma": 0.99,
|
89 |
-
"gae_lambda":
|
90 |
"ent_coef": 0.0,
|
91 |
-
"vf_coef": 0.
|
92 |
"max_grad_norm": 0.5,
|
93 |
"normalize_advantage": false
|
94 |
}
|
|
|
11 |
"verbose": 1,
|
12 |
"policy_kwargs": {
|
13 |
":type:": "<class 'dict'>",
|
14 |
+
":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
|
15 |
+
"log_std_init": -2,
|
16 |
+
"ortho_init": false,
|
17 |
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
18 |
"optimizer_kwargs": {
|
19 |
"alpha": 0.99,
|
|
|
48 |
"_num_timesteps_at_start": 0,
|
49 |
"seed": null,
|
50 |
"action_noise": null,
|
51 |
+
"start_time": 1677960998521204651,
|
52 |
+
"learning_rate": 0.00096,
|
53 |
"tensorboard_log": null,
|
54 |
"lr_schedule": {
|
55 |
":type:": "<class 'function'>",
|
56 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
57 |
},
|
58 |
"_last_obs": {
|
59 |
":type:": "<class 'collections.OrderedDict'>",
|
60 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA1n/WPq3RijyaLwk/1n/WPq3RijyaLwk/1n/WPq3RijyaLwk/1n/WPq3RijyaLwk/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAw0C/P7PnnL+oDWS/rh4pv4QtaD4PgU+/d/2lvy2Qtb/ANjs/TF1Lv3Y4iL8zqic/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADWf9Y+rdGKPJovCT+DDjo97AlhukaRNT3Wf9Y+rdGKPJovCT+DDjo97AlhukaRNT3Wf9Y+rdGKPJovCT+DDjo97AlhukaRNT3Wf9Y+rdGKPJovCT+DDjo97AlhukaRNT2UaA5LBEsGhpRoEnSUUpR1Lg==",
|
61 |
+
"achieved_goal": "[[0.41894406 0.01694568 0.5358826 ]\n [0.41894406 0.01694568 0.5358826 ]\n [0.41894406 0.01694568 0.5358826 ]\n [0.41894406 0.01694568 0.5358826 ]]",
|
62 |
+
"desired_goal": "[[ 1.4941639 -1.2258209 -0.8908334 ]\n [-0.6606244 0.22673613 -0.810563 ]\n [-1.2967976 -1.4184624 0.73130417]\n [-0.79439235 -1.064223 0.6549408 ]]",
|
63 |
+
"observation": "[[ 0.41894406 0.01694568 0.5358826 0.045424 -0.00085845 0.044328 ]\n [ 0.41894406 0.01694568 0.5358826 0.045424 -0.00085845 0.044328 ]\n [ 0.41894406 0.01694568 0.5358826 0.045424 -0.00085845 0.044328 ]\n [ 0.41894406 0.01694568 0.5358826 0.045424 -0.00085845 0.044328 ]]"
|
64 |
},
|
65 |
"_last_episode_starts": {
|
66 |
":type:": "<class 'numpy.ndarray'>",
|
|
|
68 |
},
|
69 |
"_last_original_obs": {
|
70 |
":type:": "<class 'collections.OrderedDict'>",
|
71 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAbTYMPl9fZD2D6qQ8wh8KPGie2b1W9mY+mgqRPbboBL6iGTs+g7k4PAr9+reUN1w+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
|
72 |
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
73 |
+
"desired_goal": "[[ 1.3692637e-01 5.5755015e-02 2.0131355e-02]\n [ 8.4304232e-03 -1.0625917e-01 2.2554907e-01]\n [ 7.0821002e-02 -1.2979397e-01 1.8271497e-01]\n [ 1.1274698e-02 -2.9920153e-05 2.1505576e-01]]",
|
74 |
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
75 |
},
|
76 |
"_episode_num": 0,
|
77 |
+
"use_sde": true,
|
78 |
"sde_sample_freq": -1,
|
79 |
"_current_progress_remaining": 0.0,
|
80 |
"ep_info_buffer": {
|
81 |
":type:": "<class 'collections.deque'>",
|
82 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIcR+5Nek28r+UhpRSlIwBbJRLMowBdJRHQKjxP8sMAm11fZQoaAZoCWgPQwh6U5EKY0vyv5SGlFKUaBVLMmgWR0Co8PBbnoxIdX2UKGgGaAloD0MIdTxmoDL+97+UhpRSlGgVSzJoFkdAqPCt9Sde6nV9lChoBmgJaA9DCPBMaJJY0u2/lIaUUpRoFUsyaBZHQKjwbk5p8F91fZQoaAZoCWgPQwg0aOif4GLfv5SGlFKUaBVLMmgWR0Co8l0XpGF0dX2UKGgGaAloD0MIF9Uiopi82b+UhpRSlGgVSzJoFkdAqPINsHjZMHV9lChoBmgJaA9DCEuxo3Go3/K/lIaUUpRoFUsyaBZHQKjxyzWPLgZ1fZQoaAZoCWgPQwgXDK65o//Yv5SGlFKUaBVLMmgWR0Co8Yuy/sVtdX2UKGgGaAloD0MIFF6CUx9I5L+UhpRSlGgVSzJoFkdAqPNx4fOlf3V9lChoBmgJaA9DCNKPhlPmZuS/lIaUUpRoFUsyaBZHQKjzImfoRqZ1fZQoaAZoCWgPQwgD0v4HWKvnv5SGlFKUaBVLMmgWR0Co8t/3WWhRdX2UKGgGaAloD0MIh4xHqYQn87+UhpRSlGgVSzJoFkdAqPKgP5HmR3V9lChoBmgJaA9DCHTRkPEoFfC/lIaUUpRoFUsyaBZHQKj0iEBbOeJ1fZQoaAZoCWgPQwgCnN7F+3Hjv5SGlFKUaBVLMmgWR0Co9DikXUH6dX2UKGgGaAloD0MIhJz3/3FC7b+UhpRSlGgVSzJoFkdAqPP1+3H7xnV9lChoBmgJaA9DCLSs+8dCtPa/lIaUUpRoFUsyaBZHQKjztmI0qH51fZQoaAZoCWgPQwjgZYaNsn7iv5SGlFKUaBVLMmgWR0Co9aAOavzOdX2UKGgGaAloD0MIfERMiSR66L+UhpRSlGgVSzJoFkdAqPVRksjFAHV9lChoBmgJaA9DCLix2ZHqO+q/lIaUUpRoFUsyaBZHQKj1D9n9Nvh1fZQoaAZoCWgPQwgGKuPfZ1z3v5SGlFKUaBVLMmgWR0Co9NBLGrCFdX2UKGgGaAloD0MIjgWFQZkG+L+UhpRSlGgVSzJoFkdAqPcXvKEFn3V9lChoBmgJaA9DCBedLLXer/K/lIaUUpRoFUsyaBZHQKj2yURnOB11fZQoaAZoCWgPQwhkrDb/rzrxv5SGlFKUaBVLMmgWR0Co9oetKZlWdX2UKGgGaAloD0MIJ9pVSPnJ5b+UhpRSlGgVSzJoFkdAqPZJAv+OwXV9lChoBmgJaA9DCBiUaTS52PG/lIaUUpRoFUsyaBZHQKj44NIbwSd1fZQoaAZoCWgPQwhBDkqYaXvsv5SGlFKUaBVLMmgWR0Co+JIZZSvUdX2UKGgGaAloD0MIcO8a9KV38r+UhpRSlGgVSzJoFkdAqPhQQ6IWQHV9lChoBmgJaA9DCCAJ+3YS0fa/lIaUUpRoFUsyaBZHQKj4EVclgMN1fZQoaAZoCWgPQwh+xoUDIdnzv5SGlFKUaBVLMmgWR0Co+pzTF2mpdX2UKGgGaAloD0MILsiW5euy8b+UhpRSlGgVSzJoFkdAqPpOF8G9pXV9lChoBmgJaA9DCHHJcad0MPO/lIaUUpRoFUsyaBZHQKj6DDzAeq91fZQoaAZoCWgPQwhpq5LIPsj7v5SGlFKUaBVLMmgWR0Co+c1SGahIdX2UKGgGaAloD0MIQ+T09XxN6b+UhpRSlGgVSzJoFkdAqPyH58BuGnV9lChoBmgJaA9DCOXwSScSzOi/lIaUUpRoFUsyaBZHQKj8OZR8+id1fZQoaAZoCWgPQwi5OZUMAFX2v5SGlFKUaBVLMmgWR0Co+/hZIQOGdX2UKGgGaAloD0MI3jtqTIh59b+UhpRSlGgVSzJoFkdAqPu5wsGxEHV9lChoBmgJaA9DCMZNDTSfc+S/lIaUUpRoFUsyaBZHQKj+YpJf6XV1fZQoaAZoCWgPQwgbSu1FtJ3mv5SGlFKUaBVLMmgWR0Co/hQyAQQMdX2UKGgGaAloD0MI0lJ5O8Jp7L+UhpRSlGgVSzJoFkdAqP3SnvUjLXV9lChoBmgJaA9DCL9EvHX+beC/lIaUUpRoFUsyaBZHQKj9k4smOVB1fZQoaAZoCWgPQwi0Imqiz0fgv5SGlFKUaBVLMmgWR0CpAD+AuqWDdX2UKGgGaAloD0MIPglszsGz7L+UhpRSlGgVSzJoFkdAqP/xHf/FSHV9lChoBmgJaA9DCLzqAfOQqeW/lIaUUpRoFUsyaBZHQKj/r7gsK9h1fZQoaAZoCWgPQwh07+GS407pv5SGlFKUaBVLMmgWR0Co/3D4QBgedX2UKGgGaAloD0MIz6J3KuCe3r+UhpRSlGgVSzJoFkdAqQGKsXBP9HV9lChoBmgJaA9DCPP/qiNHOue/lIaUUpRoFUsyaBZHQKkBOzsyBTZ1fZQoaAZoCWgPQwjFymjk84rkv5SGlFKUaBVLMmgWR0CpAPjXFtKqdX2UKGgGaAloD0MIH7sLlBTY7b+UhpRSlGgVSzJoFkdAqQC5NTLntHV9lChoBmgJaA9DCJfkgF1NHvC/lIaUUpRoFUsyaBZHQKkCm5y2hIx1fZQoaAZoCWgPQwh3nQ35Z0byv5SGlFKUaBVLMmgWR0CpAkv420iRdX2UKGgGaAloD0MIOSf20D6W/L+UhpRSlGgVSzJoFkdAqQIJhnanJnV9lChoBmgJaA9DCNhhTPp7qeO/lIaUUpRoFUsyaBZHQKkBycDKYAt1fZQoaAZoCWgPQwg1JO6x9KHdv5SGlFKUaBVLMmgWR0CpA7DZDiOvdX2UKGgGaAloD0MI/u2yX3c677+UhpRSlGgVSzJoFkdAqQNhWvKU3XV9lChoBmgJaA9DCCpyiLg5Ffe/lIaUUpRoFUsyaBZHQKkDHv7WNFV1fZQoaAZoCWgPQwjJO4cyVAX0v5SGlFKUaBVLMmgWR0CpAt8x9G7SdX2UKGgGaAloD0MIPWNfsvFg8L+UhpRSlGgVSzJoFkdAqQTGVkc0cnV9lChoBmgJaA9DCD4/jBAe7eO/lIaUUpRoFUsyaBZHQKkEdyfcvdx1fZQoaAZoCWgPQwjE7dCwGHXqv5SGlFKUaBVLMmgWR0CpBDUD2alUdX2UKGgGaAloD0MIteBFX0Fa8L+UhpRSlGgVSzJoFkdAqQP1jAi3X3V9lChoBmgJaA9DCM7fhEIEHN+/lIaUUpRoFUsyaBZHQKkFzgmZ3LV1fZQoaAZoCWgPQwhAMbJkjuXmv5SGlFKUaBVLMmgWR0CpBX7iqABldX2UKGgGaAloD0MIWOGWj6Sk4L+UhpRSlGgVSzJoFkdAqQU8TewcHXV9lChoBmgJaA9DCIsYdhiTfuy/lIaUUpRoFUsyaBZHQKkE/KJVKf51fZQoaAZoCWgPQwib5bLROT/bv5SGlFKUaBVLMmgWR0CpBufMnqmkdX2UKGgGaAloD0MIDoY6rHBL4r+UhpRSlGgVSzJoFkdAqQaYEB8x9HV9lChoBmgJaA9DCHvdIjDWd/G/lIaUUpRoFUsyaBZHQKkGVaX8fmt1fZQoaAZoCWgPQwgFpWjlXuDyv5SGlFKUaBVLMmgWR0CpBhXYtg8bdX2UKGgGaAloD0MIHy457pQO6L+UhpRSlGgVSzJoFkdAqQgJt78ejnV9lChoBmgJaA9DCA2MvKyJBfG/lIaUUpRoFUsyaBZHQKkHumb9ZRt1fZQoaAZoCWgPQwi0PA/uzlrlv5SGlFKUaBVLMmgWR0CpB3gprk8zdX2UKGgGaAloD0MI0v9yLVoA6r+UhpRSlGgVSzJoFkdAqQc4tapxWHV9lChoBmgJaA9DCBUeNLvure2/lIaUUpRoFUsyaBZHQKkJLBCUorp1fZQoaAZoCWgPQwiOI9biUwDov5SGlFKUaBVLMmgWR0CpCNy0jTrndX2UKGgGaAloD0MIGVjH8UMl6r+UhpRSlGgVSzJoFkdAqQiaXF98Z3V9lChoBmgJaA9DCE890uC2tvC/lIaUUpRoFUsyaBZHQKkIWsxO+Ix1fZQoaAZoCWgPQwhBgAwdOyjgv5SGlFKUaBVLMmgWR0CpCj7uMMqjdX2UKGgGaAloD0MIfGEyVTCq7b+UhpRSlGgVSzJoFkdAqQnvi97F9HV9lChoBmgJaA9DCBE10eejTPG/lIaUUpRoFUsyaBZHQKkJrSG8Emp1fZQoaAZoCWgPQwjdYROZucDsv5SGlFKUaBVLMmgWR0CpCW17Qb++dX2UKGgGaAloD0MIgQabOo8K5L+UhpRSlGgVSzJoFkdAqQtS5uqFRHV9lChoBmgJaA9DCAcMkj6t4vK/lIaUUpRoFUsyaBZHQKkLA3gDRtx1fZQoaAZoCWgPQwijkjoBTYTkv5SGlFKUaBVLMmgWR0CpCsELx7RfdX2UKGgGaAloD0MImkLnNXaJ3r+UhpRSlGgVSzJoFkdAqQqBSiudPXV9lChoBmgJaA9DCPJCOjyEsfC/lIaUUpRoFUsyaBZHQKkMZNcGC7N1fZQoaAZoCWgPQwh2bATidf3mv5SGlFKUaBVLMmgWR0CpDBYnndO7dX2UKGgGaAloD0MIuVM6WP9n5r+UhpRSlGgVSzJoFkdAqQvUsrd30XV9lChoBmgJaA9DCNEHy9jQzd6/lIaUUpRoFUsyaBZHQKkLlQ4S6Dp1fZQoaAZoCWgPQwgzi1BsBc3sv5SGlFKUaBVLMmgWR0CpDW/hl18tdX2UKGgGaAloD0MIpS2u8Zns7r+UhpRSlGgVSzJoFkdAqQ0gc5sCT3V9lChoBmgJaA9DCKKXUSy3NOm/lIaUUpRoFUsyaBZHQKkM3d7fHgh1fZQoaAZoCWgPQwi8s3bbhebiv5SGlFKUaBVLMmgWR0CpDJ4+8oQWdX2UKGgGaAloD0MIA+0OKQYI87+UhpRSlGgVSzJoFkdAqQ53trsSkHV9lChoBmgJaA9DCJwwYTQr292/lIaUUpRoFUsyaBZHQKkOKCOmzjZ1fZQoaAZoCWgPQwiPOGQD6WLXv5SGlFKUaBVLMmgWR0CpDeWSlnAZdX2UKGgGaAloD0MIRPmCFhIw37+UhpRSlGgVSzJoFkdAqQ2l0Lc9GXV9lChoBmgJaA9DCARUOIJUCuC/lIaUUpRoFUsyaBZHQKkPgRZEDyR1fZQoaAZoCWgPQwi9qx4wDxnov5SGlFKUaBVLMmgWR0CpDzGnn+yadX2UKGgGaAloD0MIJGHfTiLC67+UhpRSlGgVSzJoFkdAqQ7vQdCE6HV9lChoBmgJaA9DCB8OEqJ8weC/lIaUUpRoFUsyaBZHQKkOr2tdRix1ZS4="
|
83 |
},
|
84 |
"ep_success_buffer": {
|
85 |
":type:": "<class 'collections.deque'>",
|
86 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
87 |
},
|
88 |
+
"_n_updates": 31250,
|
89 |
+
"n_steps": 8,
|
90 |
"gamma": 0.99,
|
91 |
+
"gae_lambda": 0.9,
|
92 |
"ent_coef": 0.0,
|
93 |
+
"vf_coef": 0.4,
|
94 |
"max_grad_norm": 0.5,
|
95 |
"normalize_advantage": false
|
96 |
}
|
a2c-PandaReachDense-v2/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3c5dc4594751f3ac0ffa1b34a1cfd583a1910826e1498cb2e0afa99a3e18342a
|
3 |
+
size 45438
|
a2c-PandaReachDense-v2/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:432b981337804c34c84f166d5884390e82e51c6808ce24a06afe33b0a4314d35
|
3 |
+
size 46718
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fd32daaa430>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fd32daa29c0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1677957431281735750, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAwiHoPvpBA7xusiE/wiHoPvpBA7xusiE/wiHoPvpBA7xusiE/wiHoPvpBA7xusiE/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAGbu6vspRF748/sY/4xJfPufkrD+ziKW/cE+LvwQmpD9YP9a/qse+P4+elz8+xuy9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADCIeg++kEDvG6yIT9wlyE8mxkMu7dNWjzCIeg++kEDvG6yIT9wlyE8mxkMu7dNWjzCIeg++kEDvG6yIT9wlyE8mxkMu7dNWjzCIeg++kEDvG6yIT9wlyE8mxkMu7dNWjyUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.45338255 -0.00801134 0.6316289 ]\n [ 0.45338255 -0.00801134 0.6316289 ]\n [ 0.45338255 -0.00801134 0.6316289 ]\n [ 0.45338255 -0.00801134 0.6316289 ]]", "desired_goal": "[[-0.3647087 -0.14777294 1.5546336 ]\n [ 0.21784548 1.3507355 -1.2932342 ]\n [-1.0883617 1.2824101 -1.6738081 ]\n [ 1.4904683 1.1845263 -0.11561249]]", "observation": "[[ 0.45338255 -0.00801134 0.6316289 0.00986277 -0.00213776 0.01332419]\n [ 0.45338255 -0.00801134 0.6316289 0.00986277 -0.00213776 0.01332419]\n [ 0.45338255 -0.00801134 0.6316289 0.00986277 -0.00213776 0.01332419]\n [ 0.45338255 -0.00801134 0.6316289 0.00986277 -0.00213776 0.01332419]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAASrxRvLG1sb3zPWs9pG65vdB28L3FLXY+J2ylvbKjPDyfl2M+KDM9Pba8zrzjS7I9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.01280124 -0.08677233 0.05743213]\n [-0.09054306 -0.11741412 0.24040897]\n [-0.08077269 0.01151364 0.22225808]\n [ 0.04619136 -0.02523647 0.0870588 ]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIiEuOO6VDB8CUhpRSlIwBbJRLMowBdJRHQKj0qO1fE4x1fZQoaAZoCWgPQwjmriXkg94DwJSGlFKUaBVLMmgWR0Co9GzDfm9ydX2UKGgGaAloD0MIKCfaVUh59r+UhpRSlGgVSzJoFkdAqPQvms/6f3V9lChoBmgJaA9DCL5MFCF1+/2/lIaUUpRoFUsyaBZHQKjz3V9Wp611fZQoaAZoCWgPQwhWgsXhzC/0v5SGlFKUaBVLMmgWR0Co9oN3wCr+dX2UKGgGaAloD0MIBVH3AUgtAMCUhpRSlGgVSzJoFkdAqPZHCj1wpHV9lChoBmgJaA9DCFSobi7+Nv6/lIaUUpRoFUsyaBZHQKj2CbgjyFx1fZQoaAZoCWgPQwi/1TpxOZ77v5SGlFKUaBVLMmgWR0Co9bdqUNaydX2UKGgGaAloD0MITweynlr9/L+UhpRSlGgVSzJoFkdAqPhSiCaqj3V9lChoBmgJaA9DCDgwuVFkTQDAlIaUUpRoFUsyaBZHQKj4FlWfbsZ1fZQoaAZoCWgPQwjo24KlusD7v5SGlFKUaBVLMmgWR0Co99j3mFJydX2UKGgGaAloD0MIV+wvuyfPA8CUhpRSlGgVSzJoFkdAqPeGyu6mO3V9lChoBmgJaA9DCM4bJ4V5LwDAlIaUUpRoFUsyaBZHQKj6QG34Kx91fZQoaAZoCWgPQwiJesGnOVkBwJSGlFKUaBVLMmgWR0Co+gRCY1HfdX2UKGgGaAloD0MI6/8c5strCcCUhpRSlGgVSzJoFkdAqPnHSMLncXV9lChoBmgJaA9DCCZV203wDfm/lIaUUpRoFUsyaBZHQKj5dS9/SYx1fZQoaAZoCWgPQwjJy5pY4Gv2v5SGlFKUaBVLMmgWR0Co+4nv2GqQdX2UKGgGaAloD0MIliTP9X04AcCUhpRSlGgVSzJoFkdAqPtMx9G7SXV9lChoBmgJaA9DCHsS2JyDpwzAlIaUUpRoFUsyaBZHQKj7DrcCYC11fZQoaAZoCWgPQwh+xRouci8JwJSGlFKUaBVLMmgWR0Co+rurp7kXdX2UKGgGaAloD0MIeNUD5iFT8L+UhpRSlGgVSzJoFkdAqPy8Eq2BrnV9lChoBmgJaA9DCPazWIrkSwXAlIaUUpRoFUsyaBZHQKj8fwG4ZuR1fZQoaAZoCWgPQwgs0y8Rb93yv5SGlFKUaBVLMmgWR0Co/EDej2zwdX2UKGgGaAloD0MIDkxuFFnLCcCUhpRSlGgVSzJoFkdAqPvtqUNayXV9lChoBmgJaA9DCPWgoBSt3Pe/lIaUUpRoFUsyaBZHQKj91qYZ2p11fZQoaAZoCWgPQwg1fAvrxlsFwJSGlFKUaBVLMmgWR0Co/ZluvUz9dX2UKGgGaAloD0MIm1Wfq624B8CUhpRSlGgVSzJoFkdAqP1bS9du53V9lChoBmgJaA9DCIOI1LSLyRDAlIaUUpRoFUsyaBZHQKj9CBTXJ5p1fZQoaAZoCWgPQwieI/JdSh38v5SGlFKUaBVLMmgWR0Co/urH2h7FdX2UKGgGaAloD0MIEhQ/xtz1DsCUhpRSlGgVSzJoFkdAqP6tme18cHV9lChoBmgJaA9DCI4+5gMCHfe/lIaUUpRoFUsyaBZHQKj+b0aIeo11fZQoaAZoCWgPQwg2lNqLaPv3v5SGlFKUaBVLMmgWR0Co/hv73wkPdX2UKGgGaAloD0MI+pekMsUc+r+UhpRSlGgVSzJoFkdAqP/6rvLHMnV9lChoBmgJaA9DCIqSkEjbuBHAlIaUUpRoFUsyaBZHQKj/vW8RL9N1fZQoaAZoCWgPQwi3Qe23duL8v5SGlFKUaBVLMmgWR0Co/37+tKZldX2UKGgGaAloD0MI5L7VOnEZCMCUhpRSlGgVSzJoFkdAqP8rrqt5lnV9lChoBmgJaA9DCPKYgcr4lwXAlIaUUpRoFUsyaBZHQKkBBlS0jTt1fZQoaAZoCWgPQwilSSno9tICwJSGlFKUaBVLMmgWR0CpAMklu3tsdX2UKGgGaAloD0MIEkpfCDnv77+UhpRSlGgVSzJoFkdAqQCKy+pOvnV9lChoBmgJaA9DCGGnWDUIUwvAlIaUUpRoFUsyaBZHQKkAN0mMOwx1fZQoaAZoCWgPQwi0Imqiz5cUwJSGlFKUaBVLMmgWR0CpAgiZ4Oc2dX2UKGgGaAloD0MIn8n+eRowDcCUhpRSlGgVSzJoFkdAqQHLYukDZHV9lChoBmgJaA9DCOwWgbG+AQPAlIaUUpRoFUsyaBZHQKkBjNr0rbx1fZQoaAZoCWgPQwifAmA8gwb2v5SGlFKUaBVLMmgWR0CpATlSbYsedX2UKGgGaAloD0MIyoegavTKA8CUhpRSlGgVSzJoFkdAqQMQGwA2h3V9lChoBmgJaA9DCLivA+eMCAHAlIaUUpRoFUsyaBZHQKkC0rMC9yt1fZQoaAZoCWgPQwhlic4yixDyv5SGlFKUaBVLMmgWR0CpApSpJf6XdX2UKGgGaAloD0MIXW4w1GHlEcCUhpRSlGgVSzJoFkdAqQJBGYrrgXV9lChoBmgJaA9DCCYYzjXM4BHAlIaUUpRoFUsyaBZHQKkEIxIre691fZQoaAZoCWgPQwgNHTuoxPULwJSGlFKUaBVLMmgWR0CpA+XiaRZEdX2UKGgGaAloD0MIJ6H0hZAzAcCUhpRSlGgVSzJoFkdAqQOnaxoqTnV9lChoBmgJaA9DCDUHCObosQHAlIaUUpRoFUsyaBZHQKkDU/Efkmx1fZQoaAZoCWgPQwjqknGMZO8LwJSGlFKUaBVLMmgWR0CpBVeqaPS2dX2UKGgGaAloD0MII7w9CAHZEMCUhpRSlGgVSzJoFkdAqQUaiblRxnV9lChoBmgJaA9DCA8PYfw0TgDAlIaUUpRoFUsyaBZHQKkE3EjPfKp1fZQoaAZoCWgPQwgg1bDfE8sLwJSGlFKUaBVLMmgWR0CpBIkQwsXjdX2UKGgGaAloD0MIZXCUvDrnDMCUhpRSlGgVSzJoFkdAqQZcXizcAXV9lChoBmgJaA9DCIp2FVJ+0vK/lIaUUpRoFUsyaBZHQKkGHx8UmD11fZQoaAZoCWgPQwgiUz4EVWMPwJSGlFKUaBVLMmgWR0CpBeEAxSHedX2UKGgGaAloD0MIm6+Sj92FBcCUhpRSlGgVSzJoFkdAqQWNlCkXUHV9lChoBmgJaA9DCPUSY5l+yQfAlIaUUpRoFUsyaBZHQKkHergflp51fZQoaAZoCWgPQwgGu2HboqwPwJSGlFKUaBVLMmgWR0CpBz2Jiy6ddX2UKGgGaAloD0MInpeKjXld+r+UhpRSlGgVSzJoFkdAqQb/JmuklHV9lChoBmgJaA9DCCjTaHIxRvu/lIaUUpRoFUsyaBZHQKkGq/47A+J1fZQoaAZoCWgPQwjx9iAE5PsWwJSGlFKUaBVLMmgWR0CpCI85S3spdX2UKGgGaAloD0MIhxkaTwSxBcCUhpRSlGgVSzJoFkdAqQhSIk7fYXV9lChoBmgJaA9DCEWBPpEnyfW/lIaUUpRoFUsyaBZHQKkIE9Zid8R1fZQoaAZoCWgPQwgeNpGZC5wBwJSGlFKUaBVLMmgWR0CpB8CXhOxjdX2UKGgGaAloD0MIigESTaBIDcCUhpRSlGgVSzJoFkdAqQmztgKF7HV9lChoBmgJaA9DCLkYA+s4PgDAlIaUUpRoFUsyaBZHQKkJdr30wrV1fZQoaAZoCWgPQwjpmPOMfQkawJSGlFKUaBVLMmgWR0CpCTivX9R8dX2UKGgGaAloD0MIXRWoxeCBBMCUhpRSlGgVSzJoFkdAqQjlat9x63V9lChoBmgJaA9DCHujVpi+VxPAlIaUUpRoFUsyaBZHQKkKx3IMjNZ1fZQoaAZoCWgPQwhhbCHIQQkBwJSGlFKUaBVLMmgWR0CpConjQzDXdX2UKGgGaAloD0MI/bypSIUxCMCUhpRSlGgVSzJoFkdAqQpLrLQokXV9lChoBmgJaA9DCJMYBFYOrfa/lIaUUpRoFUsyaBZHQKkJ+GGEf1Z1fZQoaAZoCWgPQwhp4h3gSasIwJSGlFKUaBVLMmgWR0CpC/eeOGTLdX2UKGgGaAloD0MIk45yMJvABcCUhpRSlGgVSzJoFkdAqQu7Wd3B6HV9lChoBmgJaA9DCML7qlyofAPAlIaUUpRoFUsyaBZHQKkLfR/EwWZ1fZQoaAZoCWgPQwgvpwTEJJz4v5SGlFKUaBVLMmgWR0CpCymVJL/TdX2UKGgGaAloD0MIEqERbFyPEcCUhpRSlGgVSzJoFkdAqQ04HgP3BnV9lChoBmgJaA9DCEetMH2vYQLAlIaUUpRoFUsyaBZHQKkM+6Lfk3l1fZQoaAZoCWgPQwg0hjlBm7wewJSGlFKUaBVLMmgWR0CpDL2a2F37dX2UKGgGaAloD0MIx7sjY7U5+b+UhpRSlGgVSzJoFkdAqQxqZML4OHV9lChoBmgJaA9DCKta0lEOBgHAlIaUUpRoFUsyaBZHQKkOT3V09yN1fZQoaAZoCWgPQwhBmrFoOtsSwJSGlFKUaBVLMmgWR0CpDhI4VARkdX2UKGgGaAloD0MIx9Rd2QUD7b+UhpRSlGgVSzJoFkdAqQ3UCaJAMXV9lChoBmgJaA9DCLeZCvFIfAbAlIaUUpRoFUsyaBZHQKkNgPxQSBd1fZQoaAZoCWgPQwh1q+ek9/0TwJSGlFKUaBVLMmgWR0CpD/THjp9rdX2UKGgGaAloD0MIZ9E7FXCPCsCUhpRSlGgVSzJoFkdAqQ+4QOFxn3V9lChoBmgJaA9DCNI6qpogav2/lIaUUpRoFUsyaBZHQKkPevZh8Y11fZQoaAZoCWgPQwiXcr7Ye7ERwJSGlFKUaBVLMmgWR0CpDyh+F10UdX2UKGgGaAloD0MIXeLIA5FlAcCUhpRSlGgVSzJoFkdAqRHAtlI3BHV9lChoBmgJaA9DCMtMaf0tAfy/lIaUUpRoFUsyaBZHQKkRhFtsN2F1fZQoaAZoCWgPQwiuEiwOZ74HwJSGlFKUaBVLMmgWR0CpEUcjzI3jdX2UKGgGaAloD0MI/G66ZYdYB8CUhpRSlGgVSzJoFkdAqRD00xdpqXV9lChoBmgJaA9DCG3mkNRCyfq/lIaUUpRoFUsyaBZHQKkTlsdDIBB1fZQoaAZoCWgPQwjAety3WgcLwJSGlFKUaBVLMmgWR0CpE1px//eddX2UKGgGaAloD0MIvHSTGAR2DMCUhpRSlGgVSzJoFkdAqRMdDx9XtHV9lChoBmgJaA9DCGST/IhfsRjAlIaUUpRoFUsyaBZHQKkSyupS75F1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fd32daaa430>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fd32daa29c0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1677960998521204651, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA1n/WPq3RijyaLwk/1n/WPq3RijyaLwk/1n/WPq3RijyaLwk/1n/WPq3RijyaLwk/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAw0C/P7PnnL+oDWS/rh4pv4QtaD4PgU+/d/2lvy2Qtb/ANjs/TF1Lv3Y4iL8zqic/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADWf9Y+rdGKPJovCT+DDjo97AlhukaRNT3Wf9Y+rdGKPJovCT+DDjo97AlhukaRNT3Wf9Y+rdGKPJovCT+DDjo97AlhukaRNT3Wf9Y+rdGKPJovCT+DDjo97AlhukaRNT2UaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.41894406 0.01694568 0.5358826 ]\n [0.41894406 0.01694568 0.5358826 ]\n [0.41894406 0.01694568 0.5358826 ]\n [0.41894406 0.01694568 0.5358826 ]]", "desired_goal": "[[ 1.4941639 -1.2258209 -0.8908334 ]\n [-0.6606244 0.22673613 -0.810563 ]\n [-1.2967976 -1.4184624 0.73130417]\n [-0.79439235 -1.064223 0.6549408 ]]", "observation": "[[ 0.41894406 0.01694568 0.5358826 0.045424 -0.00085845 0.044328 ]\n [ 0.41894406 0.01694568 0.5358826 0.045424 -0.00085845 0.044328 ]\n [ 0.41894406 0.01694568 0.5358826 0.045424 -0.00085845 0.044328 ]\n [ 0.41894406 0.01694568 0.5358826 0.045424 -0.00085845 0.044328 ]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAbTYMPl9fZD2D6qQ8wh8KPGie2b1W9mY+mgqRPbboBL6iGTs+g7k4PAr9+reUN1w+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 1.3692637e-01 5.5755015e-02 2.0131355e-02]\n [ 8.4304232e-03 -1.0625917e-01 2.2554907e-01]\n [ 7.0821002e-02 -1.2979397e-01 1.8271497e-01]\n [ 1.1274698e-02 -2.9920153e-05 2.1505576e-01]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIcR+5Nek28r+UhpRSlIwBbJRLMowBdJRHQKjxP8sMAm11fZQoaAZoCWgPQwh6U5EKY0vyv5SGlFKUaBVLMmgWR0Co8PBbnoxIdX2UKGgGaAloD0MIdTxmoDL+97+UhpRSlGgVSzJoFkdAqPCt9Sde6nV9lChoBmgJaA9DCPBMaJJY0u2/lIaUUpRoFUsyaBZHQKjwbk5p8F91fZQoaAZoCWgPQwg0aOif4GLfv5SGlFKUaBVLMmgWR0Co8l0XpGF0dX2UKGgGaAloD0MIF9Uiopi82b+UhpRSlGgVSzJoFkdAqPINsHjZMHV9lChoBmgJaA9DCEuxo3Go3/K/lIaUUpRoFUsyaBZHQKjxyzWPLgZ1fZQoaAZoCWgPQwgXDK65o//Yv5SGlFKUaBVLMmgWR0Co8Yuy/sVtdX2UKGgGaAloD0MIFF6CUx9I5L+UhpRSlGgVSzJoFkdAqPNx4fOlf3V9lChoBmgJaA9DCNKPhlPmZuS/lIaUUpRoFUsyaBZHQKjzImfoRqZ1fZQoaAZoCWgPQwgD0v4HWKvnv5SGlFKUaBVLMmgWR0Co8t/3WWhRdX2UKGgGaAloD0MIh4xHqYQn87+UhpRSlGgVSzJoFkdAqPKgP5HmR3V9lChoBmgJaA9DCHTRkPEoFfC/lIaUUpRoFUsyaBZHQKj0iEBbOeJ1fZQoaAZoCWgPQwgCnN7F+3Hjv5SGlFKUaBVLMmgWR0Co9DikXUH6dX2UKGgGaAloD0MIhJz3/3FC7b+UhpRSlGgVSzJoFkdAqPP1+3H7xnV9lChoBmgJaA9DCLSs+8dCtPa/lIaUUpRoFUsyaBZHQKjztmI0qH51fZQoaAZoCWgPQwjgZYaNsn7iv5SGlFKUaBVLMmgWR0Co9aAOavzOdX2UKGgGaAloD0MIfERMiSR66L+UhpRSlGgVSzJoFkdAqPVRksjFAHV9lChoBmgJaA9DCLix2ZHqO+q/lIaUUpRoFUsyaBZHQKj1D9n9Nvh1fZQoaAZoCWgPQwgGKuPfZ1z3v5SGlFKUaBVLMmgWR0Co9NBLGrCFdX2UKGgGaAloD0MIjgWFQZkG+L+UhpRSlGgVSzJoFkdAqPcXvKEFn3V9lChoBmgJaA9DCBedLLXer/K/lIaUUpRoFUsyaBZHQKj2yURnOB11fZQoaAZoCWgPQwhkrDb/rzrxv5SGlFKUaBVLMmgWR0Co9oetKZlWdX2UKGgGaAloD0MIJ9pVSPnJ5b+UhpRSlGgVSzJoFkdAqPZJAv+OwXV9lChoBmgJaA9DCBiUaTS52PG/lIaUUpRoFUsyaBZHQKj44NIbwSd1fZQoaAZoCWgPQwhBDkqYaXvsv5SGlFKUaBVLMmgWR0Co+JIZZSvUdX2UKGgGaAloD0MIcO8a9KV38r+UhpRSlGgVSzJoFkdAqPhQQ6IWQHV9lChoBmgJaA9DCCAJ+3YS0fa/lIaUUpRoFUsyaBZHQKj4EVclgMN1fZQoaAZoCWgPQwh+xoUDIdnzv5SGlFKUaBVLMmgWR0Co+pzTF2mpdX2UKGgGaAloD0MILsiW5euy8b+UhpRSlGgVSzJoFkdAqPpOF8G9pXV9lChoBmgJaA9DCHHJcad0MPO/lIaUUpRoFUsyaBZHQKj6DDzAeq91fZQoaAZoCWgPQwhpq5LIPsj7v5SGlFKUaBVLMmgWR0Co+c1SGahIdX2UKGgGaAloD0MIQ+T09XxN6b+UhpRSlGgVSzJoFkdAqPyH58BuGnV9lChoBmgJaA9DCOXwSScSzOi/lIaUUpRoFUsyaBZHQKj8OZR8+id1fZQoaAZoCWgPQwi5OZUMAFX2v5SGlFKUaBVLMmgWR0Co+/hZIQOGdX2UKGgGaAloD0MI3jtqTIh59b+UhpRSlGgVSzJoFkdAqPu5wsGxEHV9lChoBmgJaA9DCMZNDTSfc+S/lIaUUpRoFUsyaBZHQKj+YpJf6XV1fZQoaAZoCWgPQwgbSu1FtJ3mv5SGlFKUaBVLMmgWR0Co/hQyAQQMdX2UKGgGaAloD0MI0lJ5O8Jp7L+UhpRSlGgVSzJoFkdAqP3SnvUjLXV9lChoBmgJaA9DCL9EvHX+beC/lIaUUpRoFUsyaBZHQKj9k4smOVB1fZQoaAZoCWgPQwi0Imqiz0fgv5SGlFKUaBVLMmgWR0CpAD+AuqWDdX2UKGgGaAloD0MIPglszsGz7L+UhpRSlGgVSzJoFkdAqP/xHf/FSHV9lChoBmgJaA9DCLzqAfOQqeW/lIaUUpRoFUsyaBZHQKj/r7gsK9h1fZQoaAZoCWgPQwh07+GS407pv5SGlFKUaBVLMmgWR0Co/3D4QBgedX2UKGgGaAloD0MIz6J3KuCe3r+UhpRSlGgVSzJoFkdAqQGKsXBP9HV9lChoBmgJaA9DCPP/qiNHOue/lIaUUpRoFUsyaBZHQKkBOzsyBTZ1fZQoaAZoCWgPQwjFymjk84rkv5SGlFKUaBVLMmgWR0CpAPjXFtKqdX2UKGgGaAloD0MIH7sLlBTY7b+UhpRSlGgVSzJoFkdAqQC5NTLntHV9lChoBmgJaA9DCJfkgF1NHvC/lIaUUpRoFUsyaBZHQKkCm5y2hIx1fZQoaAZoCWgPQwh3nQ35Z0byv5SGlFKUaBVLMmgWR0CpAkv420iRdX2UKGgGaAloD0MIOSf20D6W/L+UhpRSlGgVSzJoFkdAqQIJhnanJnV9lChoBmgJaA9DCNhhTPp7qeO/lIaUUpRoFUsyaBZHQKkBycDKYAt1fZQoaAZoCWgPQwg1JO6x9KHdv5SGlFKUaBVLMmgWR0CpA7DZDiOvdX2UKGgGaAloD0MI/u2yX3c677+UhpRSlGgVSzJoFkdAqQNhWvKU3XV9lChoBmgJaA9DCCpyiLg5Ffe/lIaUUpRoFUsyaBZHQKkDHv7WNFV1fZQoaAZoCWgPQwjJO4cyVAX0v5SGlFKUaBVLMmgWR0CpAt8x9G7SdX2UKGgGaAloD0MIPWNfsvFg8L+UhpRSlGgVSzJoFkdAqQTGVkc0cnV9lChoBmgJaA9DCD4/jBAe7eO/lIaUUpRoFUsyaBZHQKkEdyfcvdx1fZQoaAZoCWgPQwjE7dCwGHXqv5SGlFKUaBVLMmgWR0CpBDUD2alUdX2UKGgGaAloD0MIteBFX0Fa8L+UhpRSlGgVSzJoFkdAqQP1jAi3X3V9lChoBmgJaA9DCM7fhEIEHN+/lIaUUpRoFUsyaBZHQKkFzgmZ3LV1fZQoaAZoCWgPQwhAMbJkjuXmv5SGlFKUaBVLMmgWR0CpBX7iqABldX2UKGgGaAloD0MIWOGWj6Sk4L+UhpRSlGgVSzJoFkdAqQU8TewcHXV9lChoBmgJaA9DCIsYdhiTfuy/lIaUUpRoFUsyaBZHQKkE/KJVKf51fZQoaAZoCWgPQwib5bLROT/bv5SGlFKUaBVLMmgWR0CpBufMnqmkdX2UKGgGaAloD0MIDoY6rHBL4r+UhpRSlGgVSzJoFkdAqQaYEB8x9HV9lChoBmgJaA9DCHvdIjDWd/G/lIaUUpRoFUsyaBZHQKkGVaX8fmt1fZQoaAZoCWgPQwgFpWjlXuDyv5SGlFKUaBVLMmgWR0CpBhXYtg8bdX2UKGgGaAloD0MIHy457pQO6L+UhpRSlGgVSzJoFkdAqQgJt78ejnV9lChoBmgJaA9DCA2MvKyJBfG/lIaUUpRoFUsyaBZHQKkHumb9ZRt1fZQoaAZoCWgPQwi0PA/uzlrlv5SGlFKUaBVLMmgWR0CpB3gprk8zdX2UKGgGaAloD0MI0v9yLVoA6r+UhpRSlGgVSzJoFkdAqQc4tapxWHV9lChoBmgJaA9DCBUeNLvure2/lIaUUpRoFUsyaBZHQKkJLBCUorp1fZQoaAZoCWgPQwiOI9biUwDov5SGlFKUaBVLMmgWR0CpCNy0jTrndX2UKGgGaAloD0MIGVjH8UMl6r+UhpRSlGgVSzJoFkdAqQiaXF98Z3V9lChoBmgJaA9DCE890uC2tvC/lIaUUpRoFUsyaBZHQKkIWsxO+Ix1fZQoaAZoCWgPQwhBgAwdOyjgv5SGlFKUaBVLMmgWR0CpCj7uMMqjdX2UKGgGaAloD0MIfGEyVTCq7b+UhpRSlGgVSzJoFkdAqQnvi97F9HV9lChoBmgJaA9DCBE10eejTPG/lIaUUpRoFUsyaBZHQKkJrSG8Emp1fZQoaAZoCWgPQwjdYROZucDsv5SGlFKUaBVLMmgWR0CpCW17Qb++dX2UKGgGaAloD0MIgQabOo8K5L+UhpRSlGgVSzJoFkdAqQtS5uqFRHV9lChoBmgJaA9DCAcMkj6t4vK/lIaUUpRoFUsyaBZHQKkLA3gDRtx1fZQoaAZoCWgPQwijkjoBTYTkv5SGlFKUaBVLMmgWR0CpCsELx7RfdX2UKGgGaAloD0MImkLnNXaJ3r+UhpRSlGgVSzJoFkdAqQqBSiudPXV9lChoBmgJaA9DCPJCOjyEsfC/lIaUUpRoFUsyaBZHQKkMZNcGC7N1fZQoaAZoCWgPQwh2bATidf3mv5SGlFKUaBVLMmgWR0CpDBYnndO7dX2UKGgGaAloD0MIuVM6WP9n5r+UhpRSlGgVSzJoFkdAqQvUsrd30XV9lChoBmgJaA9DCNEHy9jQzd6/lIaUUpRoFUsyaBZHQKkLlQ4S6Dp1fZQoaAZoCWgPQwgzi1BsBc3sv5SGlFKUaBVLMmgWR0CpDW/hl18tdX2UKGgGaAloD0MIpS2u8Zns7r+UhpRSlGgVSzJoFkdAqQ0gc5sCT3V9lChoBmgJaA9DCKKXUSy3NOm/lIaUUpRoFUsyaBZHQKkM3d7fHgh1fZQoaAZoCWgPQwi8s3bbhebiv5SGlFKUaBVLMmgWR0CpDJ4+8oQWdX2UKGgGaAloD0MIA+0OKQYI87+UhpRSlGgVSzJoFkdAqQ53trsSkHV9lChoBmgJaA9DCJwwYTQr292/lIaUUpRoFUsyaBZHQKkOKCOmzjZ1fZQoaAZoCWgPQwiPOGQD6WLXv5SGlFKUaBVLMmgWR0CpDeWSlnAZdX2UKGgGaAloD0MIRPmCFhIw37+UhpRSlGgVSzJoFkdAqQ2l0Lc9GXV9lChoBmgJaA9DCARUOIJUCuC/lIaUUpRoFUsyaBZHQKkPgRZEDyR1fZQoaAZoCWgPQwi9qx4wDxnov5SGlFKUaBVLMmgWR0CpDzGnn+yadX2UKGgGaAloD0MIJGHfTiLC67+UhpRSlGgVSzJoFkdAqQ7vQdCE6HV9lChoBmgJaA9DCB8OEqJ8weC/lIaUUpRoFUsyaBZHQKkOr2tdRix1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 31250, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward": -
|
|
|
1 |
+
{"mean_reward": -0.5554218956269323, "std_reward": 0.17107476179580097, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-04T21:36:48.799143"}
|
vec_normalize.pkl
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 3212
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fe68500a4fb9fdbb6ce633b76babbe0d7e9efd8204109e3e0aa03d94d702ca4b
|
3 |
size 3212
|