AtakanTekparmak
commited on
feat: Added model card
Browse files
README.md
ADDED
@@ -0,0 +1,300 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
language:
|
4 |
+
- zh
|
5 |
+
- en
|
6 |
+
pipeline_tag: text-generation
|
7 |
+
---
|
8 |
+
<div align="center">
|
9 |
+
<img src="https://github.com/OpenBMB/MiniCPM/blob/main/assets/minicpm_logo.png?raw=true" width="500em" ></img>
|
10 |
+
</div>
|
11 |
+
|
12 |
+
<p align="center">
|
13 |
+
<a href="https://github.com/OpenBMB/MiniCPM/" target="_blank">MiniCPM Repo</a> |
|
14 |
+
<a href="https://arxiv.org/abs/2404.06395" target="_blank">MiniCPM Paper</a> |
|
15 |
+
<a href="https://github.com/OpenBMB/MiniCPM-V/" target="_blank">MiniCPM-V Repo</a> |
|
16 |
+
Join us in <a href="https://discord.gg/3cGQn9b3YM" target="_blank">Discord</a> and <a href="https://github.com/OpenBMB/MiniCPM/blob/main/assets/wechat.jpg" target="_blank">WeChat</a>
|
17 |
+
|
18 |
+
</p>
|
19 |
+
|
20 |
+
## Disclaimer
|
21 |
+
|
22 |
+
This is a f16 GGUF version, original model card is copy & pasted as is below. Followed this [README](https://github.com/OpenBMB/MiniCPM/blob/main/README-en.md#llamacpp) for quantization.
|
23 |
+
|
24 |
+
## Introduction
|
25 |
+
MiniCPM3-4B is the 3rd generation of MiniCPM series. The overall performance of MiniCPM3-4B surpasses Phi-3.5-mini-Instruct and GPT-3.5-Turbo-0125, being comparable with many recent 7B~9B models.
|
26 |
+
|
27 |
+
Compared to MiniCPM1.0/MiniCPM2.0, MiniCPM3-4B has a more powerful and versatile skill set to enable more general usage. MiniCPM3-4B supports function call, along with code interpreter. Please refer to [Advanced Features](https://github.com/OpenBMB/MiniCPM/tree/main?tab=readme-ov-file#%E8%BF%9B%E9%98%B6%E5%8A%9F%E8%83%BD) for usage guidelines.
|
28 |
+
|
29 |
+
MiniCPM3-4B has a 32k context window. Equipped with LLMxMapReduce, MiniCPM3-4B can handle infinite context theoretically, without requiring huge amount of memory.
|
30 |
+
|
31 |
+
## Usage
|
32 |
+
### Inference with Transformers
|
33 |
+
```python
|
34 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
35 |
+
import torch
|
36 |
+
|
37 |
+
path = "openbmb/MiniCPM3-4B"
|
38 |
+
device = "cuda"
|
39 |
+
|
40 |
+
tokenizer = AutoTokenizer.from_pretrained(path, trust_remote_code=True)
|
41 |
+
model = AutoModelForCausalLM.from_pretrained(path, torch_dtype=torch.bfloat16, device_map=device, trust_remote_code=True)
|
42 |
+
|
43 |
+
messages = [
|
44 |
+
{"role": "user", "content": "推荐5个北京的景点。"},
|
45 |
+
]
|
46 |
+
model_inputs = tokenizer.apply_chat_template(messages, return_tensors="pt", add_generation_prompt=True).to(device)
|
47 |
+
|
48 |
+
model_outputs = model.generate(
|
49 |
+
model_inputs,
|
50 |
+
max_new_tokens=1024,
|
51 |
+
top_p=0.7,
|
52 |
+
temperature=0.7
|
53 |
+
)
|
54 |
+
|
55 |
+
output_token_ids = [
|
56 |
+
model_outputs[i][len(model_inputs[i]):] for i in range(len(model_inputs))
|
57 |
+
]
|
58 |
+
|
59 |
+
responses = tokenizer.batch_decode(output_token_ids, skip_special_tokens=True)[0]
|
60 |
+
print(responses)
|
61 |
+
```
|
62 |
+
|
63 |
+
### Inference with [vLLM](https://github.com/vllm-project/vllm)
|
64 |
+
```python
|
65 |
+
from transformers import AutoTokenizer
|
66 |
+
from vllm import LLM, SamplingParams
|
67 |
+
|
68 |
+
model_name = "openbmb/MiniCPM3-4B"
|
69 |
+
prompt = [{"role": "user", "content": "推荐5个北京的景点。"}]
|
70 |
+
|
71 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
72 |
+
input_text = tokenizer.apply_chat_template(prompt, tokenize=False, add_generation_prompt=True)
|
73 |
+
|
74 |
+
llm = LLM(
|
75 |
+
model=model_name,
|
76 |
+
trust_remote_code=True,
|
77 |
+
tensor_parallel_size=1
|
78 |
+
)
|
79 |
+
sampling_params = SamplingParams(top_p=0.7, temperature=0.7, max_tokens=1024, repetition_penalty=1.02)
|
80 |
+
|
81 |
+
outputs = llm.generate(prompts=input_text, sampling_params=sampling_params)
|
82 |
+
|
83 |
+
print(outputs[0].outputs[0].text)
|
84 |
+
```
|
85 |
+
|
86 |
+
## Evaluation Results
|
87 |
+
|
88 |
+
<table>
|
89 |
+
<tr>
|
90 |
+
<td>Benchmark</td>
|
91 |
+
<td>Qwen2-7B-Instruct</td>
|
92 |
+
<td>GLM-4-9B-Chat</td>
|
93 |
+
<td>Gemma2-9B-it</td>
|
94 |
+
<td>Llama3.1-8B-Instruct</td>
|
95 |
+
<td>GPT-3.5-Turbo-0125</td>
|
96 |
+
<td>Phi-3.5-mini-Instruct(3.8B)</td>
|
97 |
+
<td>MiniCPM3-4B </td>
|
98 |
+
</tr>
|
99 |
+
<tr>
|
100 |
+
<td colspan="15" align="left"><strong>English</strong></td>
|
101 |
+
</tr>
|
102 |
+
<tr>
|
103 |
+
<td>MMLU</td>
|
104 |
+
<td>70.5</td>
|
105 |
+
<td>72.4</td>
|
106 |
+
<td>72.6</td>
|
107 |
+
<td>69.4</td>
|
108 |
+
<td>69.2</td>
|
109 |
+
<td>68.4</td>
|
110 |
+
<td>67.2 </td>
|
111 |
+
</tr>
|
112 |
+
<tr>
|
113 |
+
<td>BBH</td>
|
114 |
+
<td>64.9</td>
|
115 |
+
<td>76.3</td>
|
116 |
+
<td>65.2</td>
|
117 |
+
<td>67.8</td>
|
118 |
+
<td>70.3</td>
|
119 |
+
<td>68.6</td>
|
120 |
+
<td>70.2 </td>
|
121 |
+
</tr>
|
122 |
+
<tr>
|
123 |
+
<td>MT-Bench</td>
|
124 |
+
<td>8.41</td>
|
125 |
+
<td>8.35</td>
|
126 |
+
<td>7.88</td>
|
127 |
+
<td>8.28</td>
|
128 |
+
<td>8.17</td>
|
129 |
+
<td>8.60</td>
|
130 |
+
<td>8.41 </td>
|
131 |
+
</tr>
|
132 |
+
<tr>
|
133 |
+
<td>IFEVAL (Prompt Strict-Acc.)</td>
|
134 |
+
<td>51.0</td>
|
135 |
+
<td>64.5</td>
|
136 |
+
<td>71.9</td>
|
137 |
+
<td>71.5</td>
|
138 |
+
<td>58.8</td>
|
139 |
+
<td>49.4</td>
|
140 |
+
<td>68.4 </td>
|
141 |
+
</tr>
|
142 |
+
<tr>
|
143 |
+
<td colspan="15" align="left"><strong>Chinese</strong></td>
|
144 |
+
</tr>
|
145 |
+
<tr>
|
146 |
+
<td>CMMLU</td>
|
147 |
+
<td>80.9</td>
|
148 |
+
<td>71.5</td>
|
149 |
+
<td>59.5</td>
|
150 |
+
<td>55.8</td>
|
151 |
+
<td>54.5</td>
|
152 |
+
<td>46.9</td>
|
153 |
+
<td>73.3 </td>
|
154 |
+
</tr>
|
155 |
+
<tr>
|
156 |
+
<td>CEVAL</td>
|
157 |
+
<td>77.2</td>
|
158 |
+
<td>75.6</td>
|
159 |
+
<td>56.7</td>
|
160 |
+
<td>55.2</td>
|
161 |
+
<td>52.8</td>
|
162 |
+
<td>46.1</td>
|
163 |
+
<td>73.6 </td>
|
164 |
+
</tr>
|
165 |
+
<tr>
|
166 |
+
<td>AlignBench v1.1</td>
|
167 |
+
<td>7.10</td>
|
168 |
+
<td>6.61</td>
|
169 |
+
<td>7.10</td>
|
170 |
+
<td>5.68</td>
|
171 |
+
<td>5.82</td>
|
172 |
+
<td>5.73</td>
|
173 |
+
<td>6.74 </td>
|
174 |
+
</tr>
|
175 |
+
<tr>
|
176 |
+
<td>FollowBench-zh (SSR)</td>
|
177 |
+
<td>63.0</td>
|
178 |
+
<td>56.4</td>
|
179 |
+
<td>57.0</td>
|
180 |
+
<td>50.6</td>
|
181 |
+
<td>64.6</td>
|
182 |
+
<td>58.1</td>
|
183 |
+
<td>66.8 </td>
|
184 |
+
</tr>
|
185 |
+
<tr>
|
186 |
+
<td colspan="15" align="left"><strong>Math</strong></td>
|
187 |
+
</tr>
|
188 |
+
<tr>
|
189 |
+
<td>MATH</td>
|
190 |
+
<td>49.6</td>
|
191 |
+
<td>50.6</td>
|
192 |
+
<td>46.0</td>
|
193 |
+
<td>51.9</td>
|
194 |
+
<td>41.8</td>
|
195 |
+
<td>46.4</td>
|
196 |
+
<td>46.6 </td>
|
197 |
+
</tr>
|
198 |
+
<tr>
|
199 |
+
<td>GSM8K</td>
|
200 |
+
<td>82.3</td>
|
201 |
+
<td>79.6</td>
|
202 |
+
<td>79.7</td>
|
203 |
+
<td>84.5</td>
|
204 |
+
<td>76.4</td>
|
205 |
+
<td>82.7</td>
|
206 |
+
<td>81.1 </td>
|
207 |
+
</tr>
|
208 |
+
<tr>
|
209 |
+
<td>MathBench</td>
|
210 |
+
<td>63.4</td>
|
211 |
+
<td>59.4</td>
|
212 |
+
<td>45.8</td>
|
213 |
+
<td>54.3</td>
|
214 |
+
<td>48.9</td>
|
215 |
+
<td>54.9</td>
|
216 |
+
<td>65.6 </td>
|
217 |
+
</tr>
|
218 |
+
<tr>
|
219 |
+
<td colspan="15" align="left"><strong>Code</strong></td>
|
220 |
+
</tr>
|
221 |
+
<tr>
|
222 |
+
<td>HumanEval+</td>
|
223 |
+
<td>70.1</td>
|
224 |
+
<td>67.1</td>
|
225 |
+
<td>61.6</td>
|
226 |
+
<td>62.8</td>
|
227 |
+
<td>66.5</td>
|
228 |
+
<td>68.9</td>
|
229 |
+
<td>68.3 </td>
|
230 |
+
</tr>
|
231 |
+
<tr>
|
232 |
+
<td>MBPP+</td>
|
233 |
+
<td>57.1</td>
|
234 |
+
<td>62.2</td>
|
235 |
+
<td>64.3</td>
|
236 |
+
<td>55.3</td>
|
237 |
+
<td>71.4</td>
|
238 |
+
<td>55.8</td>
|
239 |
+
<td>63.2 </td>
|
240 |
+
</tr>
|
241 |
+
<tr>
|
242 |
+
<td>LiveCodeBench v3</td>
|
243 |
+
<td>22.2</td>
|
244 |
+
<td>20.2</td>
|
245 |
+
<td>19.2</td>
|
246 |
+
<td>20.4</td>
|
247 |
+
<td>24.0</td>
|
248 |
+
<td>19.6</td>
|
249 |
+
<td>22.6 </td>
|
250 |
+
</tr>
|
251 |
+
<tr>
|
252 |
+
<td colspan="15" align="left"><strong>Function Call</strong></td>
|
253 |
+
</tr>
|
254 |
+
<tr>
|
255 |
+
<td>BFCL v2</td>
|
256 |
+
<td>71.6</td>
|
257 |
+
<td>70.1</td>
|
258 |
+
<td>19.2</td>
|
259 |
+
<td>73.3</td>
|
260 |
+
<td>75.4</td>
|
261 |
+
<td>48.4</td>
|
262 |
+
<td>76.0 </td>
|
263 |
+
</tr>
|
264 |
+
<tr>
|
265 |
+
<td colspan="15" align="left"><strong>Overall</strong></td>
|
266 |
+
</tr>
|
267 |
+
<tr>
|
268 |
+
<td>Average</td>
|
269 |
+
<td>65.3</td>
|
270 |
+
<td>65.0</td>
|
271 |
+
<td>57.9</td>
|
272 |
+
<td>60.8</td>
|
273 |
+
<td>61.0</td>
|
274 |
+
<td>57.2</td>
|
275 |
+
<td><strong>66.3</strong></td>
|
276 |
+
</tr>
|
277 |
+
</table>
|
278 |
+
|
279 |
+
|
280 |
+
## Statement
|
281 |
+
* As a language model, MiniCPM3-4B generates content by learning from a vast amount of text.
|
282 |
+
* However, it does not possess the ability to comprehend or express personal opinions or value judgments.
|
283 |
+
* Any content generated by MiniCPM3-4B does not represent the viewpoints or positions of the model developers.
|
284 |
+
* Therefore, when using content generated by MiniCPM3-4B, users should take full responsibility for evaluating and verifying it on their own.
|
285 |
+
|
286 |
+
## LICENSE
|
287 |
+
* This repository is released under the [Apache-2.0](https://github.com/OpenBMB/MiniCPM/blob/main/LICENSE) License.
|
288 |
+
* The usage of MiniCPM3-4B model weights must strictly follow [MiniCPM Model License.md](https://github.com/OpenBMB/MiniCPM/blob/main/MiniCPM%20Model%20License.md).
|
289 |
+
* The models and weights of MiniCPM3-4B are completely free for academic research. after filling out a ["questionnaire"](https://modelbest.feishu.cn/share/base/form/shrcnpV5ZT9EJ6xYjh3Kx0J6v8g) for registration, are also available for free commercial use.
|
290 |
+
|
291 |
+
## Citation
|
292 |
+
|
293 |
+
```
|
294 |
+
@article{hu2024minicpm,
|
295 |
+
title={MiniCPM: Unveiling the Potential of Small Language Models with Scalable Training Strategies},
|
296 |
+
author={Hu, Shengding and Tu, Yuge and Han, Xu and He, Chaoqun and Cui, Ganqu and Long, Xiang and Zheng, Zhi and Fang, Yewei and Huang, Yuxiang and Zhao, Weilin and others},
|
297 |
+
journal={arXiv preprint arXiv:2404.06395},
|
298 |
+
year={2024}
|
299 |
+
}
|
300 |
+
```
|