--- license: mit base_model: xlm-roberta-large tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: my_xlm-roberta-large-finetuned-conll03 results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 config: conll2003 split: test args: conll2003 metrics: - name: Precision type: precision value: 0.9244064245810056 - name: Recall type: recall value: 0.9375 - name: F1 type: f1 value: 0.9309071729957805 - name: Accuracy type: accuracy value: 0.9856142995585226 --- # my_xlm-roberta-large-finetuned-conll03 This model is a fine-tuned version of [xlm-roberta-large](https://huggingface.co/xlm-roberta-large) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.1185 - Precision: 0.9244 - Recall: 0.9375 - F1: 0.9309 - Accuracy: 0.9856 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.1533 | 1.0 | 878 | 0.1178 | 0.8950 | 0.9053 | 0.9001 | 0.9805 | | 0.0303 | 2.0 | 1756 | 0.1157 | 0.9157 | 0.9331 | 0.9243 | 0.9843 | | 0.0164 | 3.0 | 2634 | 0.1185 | 0.9244 | 0.9375 | 0.9309 | 0.9856 | ### Framework versions - Transformers 4.34.1 - Pytorch 2.1.0+cu118 - Datasets 2.14.5 - Tokenizers 0.14.1