File size: 2,728 Bytes
6712de2
48ff3a0
 
 
 
 
 
 
 
 
6712de2
 
48ff3a0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
---
license: mit
base_model: facebook/w2v-bert-2.0
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: w2v-bert-2.0-malayalam_mixeddataset_two.0
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# w2v-bert-2.0-malayalam_mixeddataset_two.0

This model is a fine-tuned version of [facebook/w2v-bert-2.0](https://huggingface.co/facebook/w2v-bert-2.0) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1425
- Wer: 0.1451

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 5
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Wer    |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 1.9341        | 0.24  | 300  | 0.4363          | 0.5138 |
| 0.228         | 0.47  | 600  | 0.3644          | 0.4847 |
| 0.1828        | 0.71  | 900  | 0.2752          | 0.3807 |
| 0.1479        | 0.95  | 1200 | 0.2671          | 0.3583 |
| 0.1213        | 1.19  | 1500 | 0.2291          | 0.2861 |
| 0.1114        | 1.42  | 1800 | 0.2098          | 0.2754 |
| 0.1049        | 1.66  | 2100 | 0.2088          | 0.2832 |
| 0.0962        | 1.9   | 2400 | 0.1789          | 0.2501 |
| 0.0777        | 2.14  | 2700 | 0.1945          | 0.2371 |
| 0.0685        | 2.37  | 3000 | 0.1788          | 0.2433 |
| 0.0663        | 2.61  | 3300 | 0.1707          | 0.2264 |
| 0.0652        | 2.85  | 3600 | 0.1834          | 0.2227 |
| 0.0573        | 3.08  | 3900 | 0.1663          | 0.2065 |
| 0.0445        | 3.32  | 4200 | 0.1479          | 0.1981 |
| 0.0417        | 3.56  | 4500 | 0.1477          | 0.1779 |
| 0.0415        | 3.8   | 4800 | 0.1504          | 0.1774 |
| 0.0368        | 4.03  | 5100 | 0.1407          | 0.1655 |
| 0.0248        | 4.27  | 5400 | 0.1568          | 0.1672 |
| 0.0258        | 4.51  | 5700 | 0.1495          | 0.1582 |
| 0.0227        | 4.74  | 6000 | 0.1460          | 0.1510 |
| 0.0225        | 4.98  | 6300 | 0.1425          | 0.1451 |


### Framework versions

- Transformers 4.39.3
- Pytorch 2.1.1+cu121
- Datasets 2.16.1
- Tokenizers 0.15.1