--- license: mit base_model: microsoft/phi-2 tags: - generated_from_trainer model-index: - name: phi-sft-out results: [] --- [Built with Axolotl](https://github.com/OpenAccess-AI-Collective/axolotl)
See axolotl config axolotl version: `0.3.0` ```yaml base_model: microsoft/phi-2 model_type: AutoModelForCausalLM tokenizer_type: AutoTokenizer trust_remote_code: true load_in_8bit: false load_in_4bit: false strict: false datasets: - path: tatsu-lab/alpaca type: alpaca dataset_prepared_path: val_set_size: 0.05 output_dir: ./phi-sft-out sequence_len: 2048 sample_packing: false # currently unsupported pad_to_sequence_len: adapter: lora_model_dir: lora_r: 16 lora_alpha: 32 lora_dropout: 0.1 lora_target_linear: true lora_fan_in_fan_out: lora_modules_to_save: - embd - lm_head wandb_project: Deepseek Wa wandb_entity: lucasatkins81 wandb_watch: wandb_name: Phi2 a6000 FT wandb_log_model: gradient_accumulation_steps: 1 micro_batch_size: 1 num_epochs: 1.5 optimizer: paged_adamw_8bit adam_beta2: 0.95 adam_epsilon: 0.00001 max_grad_norm: 1.0 lr_scheduler: cosine learning_rate: 1e-5 train_on_inputs: false group_by_length: false bf16: true fp16: false tf32: true gradient_checkpointing: true early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: flash_attention: true warmup_steps: 100 evals_per_epoch: 4 saves_per_epoch: 1 debug: deepspeed: weight_decay: 0.1 fsdp: fsdp_config: resize_token_embeddings_to_32x: true special_tokens: pad_token: "<|endoftext|>" ```

# phi-sft-out This model is a fine-tuned version of [microsoft/phi-2](https://huggingface.co/microsoft/phi-2) on the None dataset. It achieves the following results on the evaluation set: - Loss: nan ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.95) and epsilon=1e-05 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 100 - num_epochs: 1.5 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 1.4382 | 0.0 | 1 | nan | | 0.9139 | 0.25 | 12351 | nan | | 0.016 | 0.5 | 24702 | nan | | 0.0538 | 0.75 | 37053 | nan | | 0.6701 | 1.0 | 49404 | nan | | 0.0018 | 1.25 | 61755 | nan | ### Framework versions - Transformers 4.37.0.dev0 - Pytorch 2.1.1+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0