File size: 3,957 Bytes
2ac2aac 9e21c0a 2ac2aac 17cf876 2ac2aac 17cf876 2ac2aac 17cf876 2ac2aac 17cf876 9e21c0a 2ac2aac a401070 9e21c0a a401070 9e21c0a 2ac2aac a401070 6e6de69 a401070 76760cf 9b7ffb8 a401070 9b7ffb8 a401070 9b7ffb8 a401070 17cf876 a401070 6e6de69 a401070 9b7ffb8 6e6de69 a401070 6e6de69 76760cf 2ac2aac 17cf876 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 |
---
tags:
- spacy
- token-classification
- ner
language:
- en
license: mit
model-index:
- name: en_ner_job_postings
results:
- task:
name: NER
type: token-classification
metrics:
- name: NER Precision
type: precision
value: 0.7516398746
- name: NER Recall
type: recall
value: 0.6069711538
- name: NER F Score
type: f_score
value: 0.6742971968
- task:
name: TAG
type: token-classification
metrics:
- name: TAG (XPOS) Accuracy
type: accuracy
value: 0.7334810915
library_name: spacy
pipeline_tag: text-classification
---
# Custom spaCy NER Model for "Profession," "Facility," and "Experience" Entities
### Overview
This spaCy-based Named Entity Recognition (NER) model has been custom-trained to recognize and classify entities related to "profession," "facility," and "experience." It is designed to enhance your text analysis capabilities by identifying these specific entity types in unstructured text data.
### Key Features
Custom-trained for high accuracy in recognizing "profession," "facility," and "experience" entities.
Suitable for various NLP tasks, such as information extraction, content categorization, and more.
Can be easily integrated into your existing spaCy-based NLP pipelines.
### Usage
#### Installation
##### You can install the custom spaCy NER model using pip:
```bash
pip install https://huggingface.co/DaFull/en_ner_job_postings/resolve/main/en_ner_job_postings-any-py3-none-any.whl
```
#### Example Usage
Here's how you can use the model for entity recognition in Python:
```python
import spacy
# Load the custom spaCy NER model
nlp = spacy.load("en_ner_job_postings")
# Process your text
text = "HR Specialist needed at Google, Dallas, TX, with expertise in employee relations and a minimum of 4 years of HR experience."
doc = nlp(text)
# Extract named entities
for ent in doc.ents:
print(f"Entity: {ent.text}, Type: {ent.label_}")
```
#### Entity Types
The model recognizes the following entity types:
- PROFESSION: Represents professions or job titles.
- FACILITY: Denotes facilities, buildings, or locations.
- EXPERIENCE: Identifies mentions of work experience, durations, or qualifications.
| Feature | Description |
| --- | --- |
| **Name** | `en_ner_job_postings` |
| **Version** | `3.6.0` |
| **spaCy** | `>=3.6.0,<3.7.0` |
| **Default Pipeline** | `tok2vec`, `tagger`, `parser`, `attribute_ruler`, `lemmatizer`, `ner` |
| **Components** | `tok2vec`, `tagger`, `parser`, `senter`, `attribute_ruler`, `lemmatizer`, `ner` |
| **Vectors** | 514157 keys, 514157 unique vectors (300 dimensions) |
| **License** | `MIT` |
### Label Scheme
<details>
<summary>View label scheme (116 labels for 3 components)</summary>
| Component | Labels |
| --- | --- |
| **`tagger`** | `$`, `''`, `,`, `-LRB-`, `-RRB-`, `.`, `:`, `ADD`, `AFX`, `CC`, `CD`, `DT`, `EX`, `FW`, `HYPH`, `IN`, `JJ`, `JJR`, `JJS`, `LS`, `MD`, `NFP`, `NN`, `NNP`, `NNPS`, `NNS`, `PDT`, `POS`, `PRP`, `PRP$`, `RB`, `RBR`, `RBS`, `RP`, `SYM`, `TO`, `UH`, `VB`, `VBD`, `VBG`, `VBN`, `VBP`, `VBZ`, `WDT`, `WP`, `WP$`, `WRB`, `XX`, `_SP`, ```` |
| **`parser`** | `ROOT`, `acl`, `acomp`, `advcl`, `advmod`, `agent`, `amod`, `appos`, `attr`, `aux`, `auxpass`, `case`, `cc`, `ccomp`, `compound`, `conj`, `csubj`, `csubjpass`, `dative`, `dep`, `det`, `dobj`, `expl`, `intj`, `mark`, `meta`, `neg`, `nmod`, `npadvmod`, `nsubj`, `nsubjpass`, `nummod`, `oprd`, `parataxis`, `pcomp`, `pobj`, `poss`, `preconj`, `predet`, `prep`, `prt`, `punct`, `quantmod`, `relcl`, `xcomp` |
| **`ner`** | `CARDINAL`, `DATE`, `EVENT`, `EXPERIENCE`, `FAC`, `FACILITY`, `GPE`, `LANGUAGE`, `LAW`, `LOC`, `MONEY`, `NORP`, `ORDINAL`, `ORG`, `PERCENT`, `PERSON`, `PRODUCT`, `PROFESSION`, `QUANTITY`, `TIME`, `WORK_OF_ART` |
</details>
### Accuracy
| Type | Score |
| --- | --- |
| `TOKEN_P` | 75.57 |
| `TOKEN_R` | 60.58 |
| `TOKEN_F` | 67.57 |
| `CUSTOM_TAG_ACC` | 73.35 |
|