File size: 3,957 Bytes
2ac2aac
 
 
 
9e21c0a
2ac2aac
 
 
 
 
 
 
 
 
 
 
 
17cf876
2ac2aac
 
17cf876
2ac2aac
 
17cf876
2ac2aac
 
 
 
 
 
17cf876
 
9e21c0a
 
2ac2aac
a401070
9e21c0a
a401070
9e21c0a
 
 
 
 
 
2ac2aac
a401070
6e6de69
 
a401070
76760cf
9b7ffb8
 
 
 
a401070
 
9b7ffb8
a401070
 
 
 
9b7ffb8
a401070
 
17cf876
a401070
 
 
6e6de69
a401070
9b7ffb8
 
 
6e6de69
a401070
 
6e6de69
 
 
 
76760cf
 
 
 
 
 
 
 
 
 
 
2ac2aac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
17cf876
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
---
tags:
- spacy
- token-classification
- ner
language:
- en
license: mit
model-index:
- name: en_ner_job_postings
  results:
  - task:
      name: NER
      type: token-classification
    metrics:
    - name: NER Precision
      type: precision
      value: 0.7516398746
    - name: NER Recall
      type: recall
      value: 0.6069711538
    - name: NER F Score
      type: f_score
      value: 0.6742971968
  - task:
      name: TAG
      type: token-classification
    metrics:
    - name: TAG (XPOS) Accuracy
      type: accuracy
      value: 0.7334810915

library_name: spacy
pipeline_tag: text-classification
---
# Custom spaCy NER Model for "Profession," "Facility," and "Experience" Entities

### Overview
This spaCy-based Named Entity Recognition (NER) model has been custom-trained to recognize and classify entities related to "profession," "facility," and "experience." It is designed to enhance your text analysis capabilities by identifying these specific entity types in unstructured text data.

### Key Features
Custom-trained for high accuracy in recognizing "profession," "facility," and "experience" entities.
Suitable for various NLP tasks, such as information extraction, content categorization, and more.
Can be easily integrated into your existing spaCy-based NLP pipelines.

### Usage
#### Installation
##### You can install the custom spaCy NER model using pip:

```bash
pip install https://huggingface.co/DaFull/en_ner_job_postings/resolve/main/en_ner_job_postings-any-py3-none-any.whl

```
#### Example Usage
Here's how you can use the model for entity recognition in Python:

```python

import spacy

# Load the custom spaCy NER model
nlp = spacy.load("en_ner_job_postings")

# Process your text
text = "HR Specialist needed at Google, Dallas, TX, with expertise in employee relations and a minimum of 4 years of HR experience."
doc = nlp(text)

# Extract named entities
for ent in doc.ents:
    print(f"Entity: {ent.text}, Type: {ent.label_}")

```

####  Entity Types
The model recognizes the following entity types:

- PROFESSION: Represents professions or job titles.
- FACILITY: Denotes facilities, buildings, or locations.
- EXPERIENCE: Identifies mentions of work experience, durations, or qualifications.

| Feature | Description |
| --- | --- |
| **Name** | `en_ner_job_postings` |
| **Version** | `3.6.0` |
| **spaCy** | `>=3.6.0,<3.7.0` |
| **Default Pipeline** | `tok2vec`, `tagger`, `parser`, `attribute_ruler`, `lemmatizer`, `ner` |
| **Components** | `tok2vec`, `tagger`, `parser`, `senter`, `attribute_ruler`, `lemmatizer`, `ner` |
| **Vectors** | 514157 keys, 514157 unique vectors (300 dimensions) |
| **License** | `MIT` |


### Label Scheme

<details>

<summary>View label scheme (116 labels for 3 components)</summary>

| Component | Labels |
| --- | --- |
| **`tagger`** | `$`, `''`, `,`, `-LRB-`, `-RRB-`, `.`, `:`, `ADD`, `AFX`, `CC`, `CD`, `DT`, `EX`, `FW`, `HYPH`, `IN`, `JJ`, `JJR`, `JJS`, `LS`, `MD`, `NFP`, `NN`, `NNP`, `NNPS`, `NNS`, `PDT`, `POS`, `PRP`, `PRP$`, `RB`, `RBR`, `RBS`, `RP`, `SYM`, `TO`, `UH`, `VB`, `VBD`, `VBG`, `VBN`, `VBP`, `VBZ`, `WDT`, `WP`, `WP$`, `WRB`, `XX`, `_SP`, ```` |
| **`parser`** | `ROOT`, `acl`, `acomp`, `advcl`, `advmod`, `agent`, `amod`, `appos`, `attr`, `aux`, `auxpass`, `case`, `cc`, `ccomp`, `compound`, `conj`, `csubj`, `csubjpass`, `dative`, `dep`, `det`, `dobj`, `expl`, `intj`, `mark`, `meta`, `neg`, `nmod`, `npadvmod`, `nsubj`, `nsubjpass`, `nummod`, `oprd`, `parataxis`, `pcomp`, `pobj`, `poss`, `preconj`, `predet`, `prep`, `prt`, `punct`, `quantmod`, `relcl`, `xcomp` |
| **`ner`** | `CARDINAL`, `DATE`, `EVENT`, `EXPERIENCE`, `FAC`, `FACILITY`, `GPE`, `LANGUAGE`, `LAW`, `LOC`, `MONEY`, `NORP`, `ORDINAL`, `ORG`, `PERCENT`, `PERSON`, `PRODUCT`, `PROFESSION`, `QUANTITY`, `TIME`, `WORK_OF_ART` |

</details>

### Accuracy

| Type | Score |
| --- | --- |
| `TOKEN_P` | 75.57 |
| `TOKEN_R` | 60.58 |
| `TOKEN_F` | 67.57 |
| `CUSTOM_TAG_ACC` | 73.35 |