--- library_name: transformers tags: [] --- # Model Card for Model ID Finetuned SpeechT5 model for text to speech task in bambara. ## Model Details ### Model Description This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** Danube - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** SpeechT5 ### Model Sources [optional] - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses ### Direct Use [More Information Needed] ### Downstream Use [optional] [More Information Needed] ### Out-of-Scope Use [More Information Needed] ## Bias, Risks, and Limitations [More Information Needed] ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. ```python from transformers import SpeechT5Processor, SpeechT5ForTextToSpeech, Seq2SeqTrainingArguments,SpeechT5HifiGan from IPython.display import Audio # Replace specials characters. replacements = [ ('ç', 'c'), ('ā', 'a'), ('à', 'a'), ('«', '"'), ('ù', 'u'), ('€', 'euros'), ('ɛ', 'e'), ('»', '"'), ('ī', 'i'), ('+', 'plus'), ('…', '...'), ('ɔ', 'o'), ('è', 'e'), ('ḥ', 'h'), ('ô', 'o'), ('ɲ', 'gn'), ('Ç', 'C'), ('“', '"'), ('Ɲ', 'gn'), ('Ŋ', 'n'), ('ŋ', 'n'), ('Ɔ', 'o'), ('Ɛ', 'e'), ('é', "e"), ('ê', "e"), ('ɾ', "r") ] def replace(your_text): for old, new in replacements: your_text = your_text.replace(old, new) return your_text your_text = replace(your_text) processor = SpeechT5Processor.from_pretrained("Danube/bambara-tts") model = SpeechT5ForTextToSpeech.from_pretrained("Danube/bambara-tts") vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan") inputs = processor(text= your_text, return_tensors="pt") speaker_embeddings = ... # I will upload the speaker embeddings during the train. speech = model.generate_speech(inputs["input_ids"], speaker_embeddings, vocoder=vocoder) Audio(speech, rate = 16000) ``` ## Training Details ### Training Data [More Information Needed] ### Training Procedure #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] #### Speeds, Sizes, Times [optional] [More Information Needed] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data [More Information Needed] #### Factors [More Information Needed] #### Metrics [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] [More Information Needed] ## Environmental Impact Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]