File size: 176,490 Bytes
8806dd0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
import os
from collections import OrderedDict
from tqdm import tqdm
import torch.distributed

from torch.nn.init import trunc_normal_

import copy

from typing import List, Any, Optional, Tuple, Type, Union

import numpy as np

import math
import warnings
from functools import partial

import torch
import torch.nn.functional as F
from torch import nn, Tensor

# a large negative value as a placeholder score for missing objects
NO_OBJ_SCORE = -1024.0

warnings.simplefilter(action="ignore", category=FutureWarning)
# OLD_GPU, USE_FLASH_ATTN, MATH_KERNEL_ON = get_sdpa_settings()
OLD_GPU, USE_FLASH_ATTN, MATH_KERNEL_ON = True, True, True

def load_checkpoint_with_prefix(filename, prefix=None, map_location='cpu', logger='current'):
    """Load partial pretrained model with specific prefix.

    Args:
        prefix (str): The prefix of sub-module.
        filename (str): Accept local filepath, URL, ``torchvision://xxx``,
            ``open-mmlab://xxx``. Please refer to ``docs/model_zoo.md`` for
            details.
        map_location (str | None): Same as :func:`torch.load`.
            Defaults to None.
        logger: logger

    Returns:
        dict or OrderedDict: The loaded checkpoint.
    """
    checkpoint = torch.load(filename, map_location=map_location)

    if 'state_dict' in checkpoint:
        state_dict = checkpoint['state_dict']
    elif 'model' in checkpoint:
        state_dict = checkpoint['model']
    else:
        state_dict = checkpoint
    if not prefix:
        return state_dict
    if not prefix.endswith('.'):
        prefix += '.'
    prefix_len = len(prefix)

    state_dict = {
        k[prefix_len:]: v
        for k, v in state_dict.items() if k.startswith(prefix)
    }

    assert state_dict, f'{prefix} is not in the pretrained model'
    return state_dict

def load_state_dict_to_model(model, state_dict,  logger='current'):
    missing_keys, unexpected_keys = model.load_state_dict(state_dict)
    if missing_keys:
        print(missing_keys)
        raise RuntimeError()
    if unexpected_keys:
        print(unexpected_keys)
        raise RuntimeError()
    print("Loaded checkpoint successfully")

class SAM2(nn.Module):
    def __init__(
            self,
            ckpt_path: str = None,
    ):
        super().__init__()

        image_encoder = self.build_image_encoder()
        memory_attention = self.build_memory_attention()
        memory_encoder = self.build_memory_encoder()
        sam2_model = SAM2VideoPredictor(
            image_encoder=image_encoder,
            memory_attention=memory_attention,
            memory_encoder=memory_encoder,
            num_maskmem = 7,
            image_size = 1024,
            # apply scaled sigmoid on mask logits for memory encoder, and directly feed input mask as output mask
            sigmoid_scale_for_mem_enc = 20.0,
            sigmoid_bias_for_mem_enc = -10.0,
            use_mask_input_as_output_without_sam = True,
            # Memory
            directly_add_no_mem_embed = True,
            # use high-resolution feature map in the SAM mask decoder
            use_high_res_features_in_sam = True,
            # output 3 masks on the first click on initial conditioning frames
            multimask_output_in_sam = True,
            # SAM heads
            iou_prediction_use_sigmoid = True,
            # cross-attend to object pointers from other frames (based on SAM output tokens) in the encoder
            use_obj_ptrs_in_encoder = True,
            add_tpos_enc_to_obj_ptrs = False,
            only_obj_ptrs_in_the_past_for_eval = True,
            # object occlusion prediction
            pred_obj_scores = True,
            pred_obj_scores_mlp = True,
            fixed_no_obj_ptr = True,
            # multimask tracking settings
            multimask_output_for_tracking = True,
            use_multimask_token_for_obj_ptr = True,
            multimask_min_pt_num = 0,
            multimask_max_pt_num = 1,
            use_mlp_for_obj_ptr_proj = True,
            # Compilation flag
            compile_image_encoder = False,
            sam_mask_decoder_extra_args={
                'dynamic_multimask_via_stability':True,
                'dynamic_multimask_stability_delta': 0.05,
                'dynamic_multimask_stability_thresh': 0.98,
            }
        )
        if ckpt_path is not None:
            state_dict = load_checkpoint_with_prefix(ckpt_path)
            load_state_dict_to_model(sam2_model, state_dict)

        self.sam2_model = sam2_model

        self.hidden_dim = self.sam2_model.hidden_dim

        self.img_mean = (0.485, 0.456, 0.406)
        self.img_std = (0.229, 0.224, 0.225)

    def build_image_encoder(self):
        def build_trunk():
            embed_dim = 144
            num_heads = 2
            stages = [2, 6, 36, 4]
            global_att_blocks = [23, 33, 43]
            window_pos_embed_bkg_spatial_size = [7, 7]
            window_spec = [8, 4, 16, 8]
            ret = Hiera(
                embed_dim=embed_dim,
                num_heads=num_heads,
                stages=stages,
                global_att_blocks=global_att_blocks,
                window_pos_embed_bkg_spatial_size=window_pos_embed_bkg_spatial_size,
                window_spec=window_spec,
            )
            return ret
        def build_neck():
            def build_position_encoding():
                num_pos_feats = 256
                normalize = True
                scale = None
                temperature = 10000
                ret = PositionEmbeddingSine(
                    num_pos_feats=num_pos_feats,
                    normalize=normalize,
                    scale=scale,
                    temperature=temperature,
                )
                return ret
            d_model = 256
            backbone_channel_list = [1152, 576, 288, 144]
            fpn_top_down_levels = [2, 3]  # output level 0 and 1 directly use the backbone features
            fpn_interp_model = 'nearest'
            position_encoding = build_position_encoding()
            ret = FpnNeck(
                d_model=d_model,
                position_encoding=position_encoding,
                backbone_channel_list=backbone_channel_list,
                fpn_top_down_levels=fpn_top_down_levels,
                fpn_interp_model=fpn_interp_model,
            )
            return ret
        scalp = 1
        trunk = build_trunk()
        neck = build_neck()
        ret = ImageEncoder(scalp=scalp, trunk=trunk, neck=neck)
        return ret

    def build_memory_attention(self):
        def build_layer():
            def build_self_attention():
                rope_theta = 10000.0
                feat_sizes = [32, 32]
                embedding_dim = 256
                num_heads = 1
                downsample_rate = 1
                dropout = 0.1
                ret = RoPEAttention(
                    rope_theta=rope_theta,
                    feat_sizes=feat_sizes,
                    embedding_dim=embedding_dim,
                    num_heads=num_heads,
                    downsample_rate=downsample_rate,
                    dropout=dropout
                )
                return ret
            def build_cross_attention():
                rope_theta = 10000.0
                feat_sizes = [32, 32]
                rope_k_repeat = True
                embedding_dim = 256
                num_heads = 1
                downsample_rate = 1
                dropout = 0.1
                kv_in_dim = 64
                ret = RoPEAttention(
                    rope_theta=rope_theta,
                    feat_sizes=feat_sizes,
                    rope_k_repeat=rope_k_repeat,
                    embedding_dim=embedding_dim,
                    num_heads=num_heads,
                    downsample_rate=downsample_rate,
                    dropout=dropout,
                    kv_in_dim=kv_in_dim
                )
                return ret
            activation = 'relu'
            dim_feedforward = 2048
            dropout = 0.1
            pos_enc_at_attn = False
            d_model = 256
            pos_enc_at_cross_attn_keys = True
            pos_enc_at_cross_attn_queries = False
            self_attention = build_self_attention()
            cross_attention = build_cross_attention()
            ret = MemoryAttentionLayer(
                activation=activation,
                dim_feedforward=dim_feedforward,
                dropout=dropout,
                pos_enc_at_attn=pos_enc_at_attn,
                d_model=d_model,
                pos_enc_at_cross_attn_queries=pos_enc_at_cross_attn_queries,
                pos_enc_at_cross_attn_keys=pos_enc_at_cross_attn_keys,
                self_attention=self_attention,
                cross_attention=cross_attention,
            )
            return ret
        d_model = 256
        pos_enc_at_input = True
        num_layers = 4
        layer = build_layer()
        ret = MemoryAttention(
            d_model=d_model,
            pos_enc_at_input=pos_enc_at_input,
            num_layers=num_layers,
            layer=layer,
        )
        return ret

    def build_memory_encoder(self):
        def build_position_encoding():
            num_pos_feats = 64
            normalize = True
            scale = None
            temperature = 10000
            ret = PositionEmbeddingSine(
                num_pos_feats=num_pos_feats,
                normalize=normalize,
                scale=scale,
                temperature=temperature,
            )
            return ret

        def build_mask_downsampler():
            kernel_size = 3
            stride = 2
            padding = 1
            ret = MaskDownSampler(
                kernel_size=kernel_size,
                stride=stride,
                padding=padding,
            )
            return ret

        def build_fuser():
            def build_layer():
                dim = 256
                kernel_size = 7
                padding = 3
                layer_scale_init_value = 1e-6
                use_dwconv = True  # depth-wise convs
                ret = CXBlock(
                    dim=dim, kernel_size=kernel_size,
                    padding=padding, layer_scale_init_value=layer_scale_init_value,
                    use_dwconv=use_dwconv,
                )
                return ret

            num_layers = 2
            layer = build_layer()
            ret = Fuser(
                layer=layer,
                num_layers=num_layers
            )
            return ret

        out_dim = 64
        position_encoding = build_position_encoding()
        mask_downsampler = build_mask_downsampler()
        fuser = build_fuser()
        ret = MemoryEncoder(
            out_dim=out_dim,
            position_encoding=position_encoding,
            mask_downsampler=mask_downsampler,
            fuser=fuser,
        )
        return ret

    def inject_language_embd(self, inference_state, language_embd):
        num_frame = len(language_embd)
        num_obj = len(language_embd[0])
        mask_out = []
        for frame_idx in range(num_frame):
            frame_mask_out = []
            for obj_idx in range(num_obj):
                _language_embd = language_embd[frame_idx][obj_idx][None][None]
                _, _, out_mask_logits = self.sam2_model.add_language_embd(inference_state, frame_idx, obj_idx + 100, _language_embd)
                frame_mask_out.append(out_mask_logits)
            frame_mask_out = torch.cat(frame_mask_out, dim=1)
            mask_out.append(frame_mask_out)
        mask_out = torch.cat(mask_out, dim=0)
        return mask_out


    def language_embd_inference(self, inference_state, language_embd):
        num_frame = len(language_embd)
        num_obj = len(language_embd[0])
        mask_out = []
        with torch.autocast(device_type="cuda", dtype=torch.bfloat16):
            for frame_idx in range(num_frame):
                frame_mask_out = []

                for obj_idx in range(num_obj):
                    _language_embd = language_embd[frame_idx][obj_idx][None][None]
                    _, _, out_mask_logits = self.sam2_model.add_language_embd(
                        inference_state,
                        frame_idx,
                        obj_idx + 100,
                        _language_embd,
                        inference=True,
                    )
                    frame_mask_out.append(out_mask_logits)
                frame_mask_out = torch.cat(frame_mask_out, dim=1)
                mask_out.append(frame_mask_out)


            mask_out = []
            for out_frame_idx, out_obj_ids, out_mask_logits in self.sam2_model.propagate_in_video(inference_state):
                mask_out.append(out_mask_logits)
            mask_out = torch.cat(mask_out, dim=0)
        return mask_out

    def get_sam2_embeddings(self, images):
        return self.sam2_model.init_state(images)

    def forward(self, batch):
        raise NotImplementedError

    def preprocess_image(self, image: torch.Tensor, dtype=torch.bfloat16) -> torch.Tensor:
        image = image / 255.

        img_mean = torch.tensor(self.img_mean, dtype=dtype, device=image.device)[:, None, None]
        img_std = torch.tensor(self.img_std, dtype=dtype, device=image.device)[:, None, None]
        image -= img_mean
        image /= img_std

        return image

class MemoryAttentionLayer(nn.Module):

    def __init__(
        self,
        activation: str,
        cross_attention: nn.Module,
        d_model: int,
        dim_feedforward: int,
        dropout: float,
        pos_enc_at_attn: bool,
        pos_enc_at_cross_attn_keys: bool,
        pos_enc_at_cross_attn_queries: bool,
        self_attention: nn.Module,
    ):
        super().__init__()
        self.d_model = d_model
        self.dim_feedforward = dim_feedforward
        self.dropout_value = dropout
        self.self_attn = self_attention
        self.cross_attn_image = cross_attention

        # Implementation of Feedforward model
        self.linear1 = nn.Linear(d_model, dim_feedforward)
        self.dropout = nn.Dropout(dropout)
        self.linear2 = nn.Linear(dim_feedforward, d_model)

        self.norm1 = nn.LayerNorm(d_model)
        self.norm2 = nn.LayerNorm(d_model)
        self.norm3 = nn.LayerNorm(d_model)
        self.dropout1 = nn.Dropout(dropout)
        self.dropout2 = nn.Dropout(dropout)
        self.dropout3 = nn.Dropout(dropout)

        self.activation_str = activation
        self.activation = get_activation_fn(activation)

        # Where to add pos enc
        self.pos_enc_at_attn = pos_enc_at_attn
        self.pos_enc_at_cross_attn_queries = pos_enc_at_cross_attn_queries
        self.pos_enc_at_cross_attn_keys = pos_enc_at_cross_attn_keys

    def _forward_sa(self, tgt, query_pos):
        # Self-Attention
        tgt2 = self.norm1(tgt)
        q = k = tgt2 + query_pos if self.pos_enc_at_attn else tgt2
        tgt2 = self.self_attn(q, k, v=tgt2)
        tgt = tgt + self.dropout1(tgt2)
        return tgt

    def _forward_ca(self, tgt, memory, query_pos, pos, num_k_exclude_rope=0):
        kwds = {}
        if num_k_exclude_rope > 0:
            assert isinstance(self.cross_attn_image, RoPEAttention)
            kwds = {"num_k_exclude_rope": num_k_exclude_rope}

        # Cross-Attention
        tgt2 = self.norm2(tgt)
        tgt2 = self.cross_attn_image(
            q=tgt2 + query_pos if self.pos_enc_at_cross_attn_queries else tgt2,
            k=memory + pos if self.pos_enc_at_cross_attn_keys else memory,
            v=memory,
            **kwds,
        )
        tgt = tgt + self.dropout2(tgt2)
        return tgt

    def forward(
        self,
        tgt,
        memory,
        pos: Optional[Tensor] = None,
        query_pos: Optional[Tensor] = None,
        num_k_exclude_rope: int = 0,
    ) -> torch.Tensor:

        # Self-Attn, Cross-Attn
        tgt = self._forward_sa(tgt, query_pos)
        tgt = self._forward_ca(tgt, memory, query_pos, pos, num_k_exclude_rope)
        # MLP
        tgt2 = self.norm3(tgt)
        tgt2 = self.linear2(self.dropout(self.activation(self.linear1(tgt2))))
        tgt = tgt + self.dropout3(tgt2)
        return tgt


class MemoryAttention(nn.Module):
    def __init__(
        self,
        d_model: int,
        pos_enc_at_input: bool,
        layer: nn.Module,
        num_layers: int,
        batch_first: bool = True,  # Do layers expect batch first input?
    ):
        super().__init__()
        self.d_model = d_model
        self.layers = get_clones(layer, num_layers)
        self.num_layers = num_layers
        self.norm = nn.LayerNorm(d_model)
        self.pos_enc_at_input = pos_enc_at_input
        self.batch_first = batch_first

    def forward(
        self,
        curr: torch.Tensor,  # self-attention inputs
        memory: torch.Tensor,  # cross-attention inputs
        curr_pos: Optional[Tensor] = None,  # pos_enc for self-attention inputs
        memory_pos: Optional[Tensor] = None,  # pos_enc for cross-attention inputs
        num_obj_ptr_tokens: int = 0,  # number of object pointer *tokens*
    ):
        if isinstance(curr, list):
            assert isinstance(curr_pos, list)
            assert len(curr) == len(curr_pos) == 1
            curr, curr_pos = (
                curr[0],
                curr_pos[0],
            )

        assert (
            curr.shape[1] == memory.shape[1]
        ), "Batch size must be the same for curr and memory"

        output = curr
        if self.pos_enc_at_input and curr_pos is not None:
            output = output + 0.1 * curr_pos

        if self.batch_first:
            # Convert to batch first
            output = output.transpose(0, 1)
            curr_pos = curr_pos.transpose(0, 1)
            memory = memory.transpose(0, 1)
            memory_pos = memory_pos.transpose(0, 1)

        for layer in self.layers:
            kwds = {}
            if isinstance(layer.cross_attn_image, RoPEAttention):
                kwds = {"num_k_exclude_rope": num_obj_ptr_tokens}

            output = layer(
                tgt=output,
                memory=memory,
                pos=memory_pos,
                query_pos=curr_pos,
                **kwds,
            )
        normed_output = self.norm(output)

        if self.batch_first:
            # Convert back to seq first
            normed_output = normed_output.transpose(0, 1)
            curr_pos = curr_pos.transpose(0, 1)

        return normed_output

class MaskDownSampler(nn.Module):
    """
    Progressively downsample a mask by total_stride, each time by stride.
    Note that LayerNorm is applied per *token*, like in ViT.

    With each downsample (by a factor stride**2), channel capacity increases by the same factor.
    In the end, we linearly project to embed_dim channels.
    """

    def __init__(
        self,
        embed_dim=256,
        kernel_size=4,
        stride=4,
        padding=0,
        total_stride=16,
        activation=nn.GELU,
    ):
        super().__init__()
        num_layers = int(math.log2(total_stride) // math.log2(stride))
        assert stride**num_layers == total_stride
        self.encoder = nn.Sequential()
        mask_in_chans, mask_out_chans = 1, 1
        for _ in range(num_layers):
            mask_out_chans = mask_in_chans * (stride**2)
            self.encoder.append(
                nn.Conv2d(
                    mask_in_chans,
                    mask_out_chans,
                    kernel_size=kernel_size,
                    stride=stride,
                    padding=padding,
                )
            )
            self.encoder.append(LayerNorm2d(mask_out_chans))
            self.encoder.append(activation())
            mask_in_chans = mask_out_chans

        self.encoder.append(nn.Conv2d(mask_out_chans, embed_dim, kernel_size=1))

    def forward(self, x):
        return self.encoder(x)


# Lightly adapted from ConvNext (https://github.com/facebookresearch/ConvNeXt)
class CXBlock(nn.Module):
    r"""ConvNeXt Block. There are two equivalent implementations:
    (1) DwConv -> LayerNorm (channels_first) -> 1x1 Conv -> GELU -> 1x1 Conv; all in (N, C, H, W)
    (2) DwConv -> Permute to (N, H, W, C); LayerNorm (channels_last) -> Linear -> GELU -> Linear; Permute back
    We use (2) as we find it slightly faster in PyTorch

    Args:
        dim (int): Number of input channels.
        drop_path (float): Stochastic depth rate. Default: 0.0
        layer_scale_init_value (float): Init value for Layer Scale. Default: 1e-6.
    """

    def __init__(
        self,
        dim,
        kernel_size=7,
        padding=3,
        drop_path=0.0,
        layer_scale_init_value=1e-6,
        use_dwconv=True,
    ):
        super().__init__()
        self.dwconv = nn.Conv2d(
            dim,
            dim,
            kernel_size=kernel_size,
            padding=padding,
            groups=dim if use_dwconv else 1,
        )  # depthwise conv
        self.norm = LayerNorm2d(dim, eps=1e-6)
        self.pwconv1 = nn.Linear(
            dim, 4 * dim
        )  # pointwise/1x1 convs, implemented with linear layers
        self.act = nn.GELU()
        self.pwconv2 = nn.Linear(4 * dim, dim)
        # self.gamma = (
        self.g_weight = (
            nn.Parameter(layer_scale_init_value * torch.ones((dim)), requires_grad=True)
            if layer_scale_init_value > 0
            else None
        )
        self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()

    def forward(self, x):
        input = x
        x = self.dwconv(x)
        x = self.norm(x)
        x = x.permute(0, 2, 3, 1)  # (N, C, H, W) -> (N, H, W, C)
        x = self.pwconv1(x)
        x = self.act(x)
        x = self.pwconv2(x)
        if self.g_weight is not None:
            x = self.g_weight * x
        x = x.permute(0, 3, 1, 2)  # (N, H, W, C) -> (N, C, H, W)

        x = input + self.drop_path(x)
        return x


class Fuser(nn.Module):
    def __init__(self, layer, num_layers, dim=None, input_projection=False):
        super().__init__()
        self.proj = nn.Identity()
        self.layers = get_clones(layer, num_layers)

        if input_projection:
            assert dim is not None
            self.proj = nn.Conv2d(dim, dim, kernel_size=1)

    def forward(self, x):
        # normally x: (N, C, H, W)
        x = self.proj(x)
        for layer in self.layers:
            x = layer(x)
        return x


class MemoryEncoder(nn.Module):
    def __init__(
        self,
        out_dim,
        mask_downsampler,
        fuser,
        position_encoding,
        in_dim=256,  # in_dim of pix_feats
    ):
        super().__init__()

        self.mask_downsampler = mask_downsampler

        self.pix_feat_proj = nn.Conv2d(in_dim, in_dim, kernel_size=1)
        self.fuser = fuser
        self.position_encoding = position_encoding
        self.out_proj = nn.Identity()
        if out_dim != in_dim:
            self.out_proj = nn.Conv2d(in_dim, out_dim, kernel_size=1)

    def forward(
        self,
        pix_feat: torch.Tensor,
        masks: torch.Tensor,
        skip_mask_sigmoid: bool = False,
    ) -> Tuple[torch.Tensor, torch.Tensor]:
        ## Process masks
        # sigmoid, so that less domain shift from gt masks which are bool
        if not skip_mask_sigmoid:
            masks = F.sigmoid(masks)
        masks = self.mask_downsampler(masks)

        ## Fuse pix_feats and downsampled masks
        # in case the visual features are on CPU, cast them to CUDA
        pix_feat = pix_feat.to(masks.device)

        x = self.pix_feat_proj(pix_feat)
        x = x + masks
        x = self.fuser(x)
        x = self.out_proj(x)

        pos = self.position_encoding(x).to(x.dtype)

        return {"vision_features": x, "vision_pos_enc": [pos]}


class ImageEncoder(nn.Module):
    def __init__(
        self,
        trunk: nn.Module,
        neck: nn.Module,
        scalp: int = 0,
    ):
        super().__init__()
        self.trunk = trunk
        self.neck = neck
        self.scalp = scalp
        assert (
            self.trunk.channel_list == self.neck.backbone_channel_list
        ), f"Channel dims of trunk and neck do not match. Trunk: {self.trunk.channel_list}, neck: {self.neck.backbone_channel_list}"

    def forward(self, sample: torch.Tensor):
        # Forward through backbone
        features, pos = self.neck(self.trunk(sample))
        if self.scalp > 0:
            # Discard the lowest resolution features
            features, pos = features[: -self.scalp], pos[: -self.scalp]

        src = features[-1]
        output = {
            "vision_features": src,
            "vision_pos_enc": pos,
            "backbone_fpn": features,
        }
        return output


class FpnNeck(nn.Module):
    """
    A modified variant of Feature Pyramid Network (FPN) neck
    (we remove output conv and also do bicubic interpolation similar to ViT
    pos embed interpolation)
    """

    def __init__(
        self,
        position_encoding: nn.Module,
        d_model: int,
        backbone_channel_list: List[int],
        kernel_size: int = 1,
        stride: int = 1,
        padding: int = 0,
        fpn_interp_model: str = "bilinear",
        fuse_type: str = "sum",
        fpn_top_down_levels: Optional[List[int]] = None,
    ):
        """Initialize the neck
        :param trunk: the backbone
        :param position_encoding: the positional encoding to use
        :param d_model: the dimension of the model
        :param neck_norm: the normalization to use
        """
        super().__init__()
        self.position_encoding = position_encoding
        self.convs = nn.ModuleList()
        self.backbone_channel_list = backbone_channel_list
        for dim in backbone_channel_list:
            current = nn.Sequential()
            current.add_module(
                "conv",
                nn.Conv2d(
                    in_channels=dim,
                    out_channels=d_model,
                    kernel_size=kernel_size,
                    stride=stride,
                    padding=padding,
                ),
            )

            self.convs.append(current)
        self.fpn_interp_model = fpn_interp_model
        assert fuse_type in ["sum", "avg"]
        self.fuse_type = fuse_type

        # levels to have top-down features in its outputs
        # e.g. if fpn_top_down_levels is [2, 3], then only outputs of level 2 and 3
        # have top-down propagation, while outputs of level 0 and level 1 have only
        # lateral features from the same backbone level.
        if fpn_top_down_levels is None:
            # default is to have top-down features on all levels
            fpn_top_down_levels = range(len(self.convs))
        self.fpn_top_down_levels = list(fpn_top_down_levels)

    def forward(self, xs: List[torch.Tensor]):

        out = [None] * len(self.convs)
        pos = [None] * len(self.convs)
        assert len(xs) == len(self.convs)
        # fpn forward pass
        # see https://github.com/facebookresearch/detectron2/blob/main/detectron2/modeling/backbone/fpn.py
        prev_features = None
        # forward in top-down order (from low to high resolution)
        n = len(self.convs) - 1
        for i in range(n, -1, -1):
            x = xs[i]
            lateral_features = self.convs[n - i](x)
            if i in self.fpn_top_down_levels and prev_features is not None:
                top_down_features = F.interpolate(
                    prev_features.to(dtype=torch.float32),
                    scale_factor=2.0,
                    mode=self.fpn_interp_model,
                    align_corners=(
                        None if self.fpn_interp_model == "nearest" else False
                    ),
                    antialias=False,
                )
                prev_features = lateral_features + top_down_features
                if self.fuse_type == "avg":
                    prev_features /= 2
            else:
                prev_features = lateral_features
            x_out = prev_features
            out[i] = x_out
            pos[i] = self.position_encoding(x_out).to(x_out.dtype)

        return out, pos

def window_partition(x, window_size):
    """
    Partition into non-overlapping windows with padding if needed.
    Args:
        x (tensor): input tokens with [B, H, W, C].
        window_size (int): window size.
    Returns:
        windows: windows after partition with [B * num_windows, window_size, window_size, C].
        (Hp, Wp): padded height and width before partition
    """
    B, H, W, C = x.shape

    pad_h = (window_size - H % window_size) % window_size
    pad_w = (window_size - W % window_size) % window_size
    if pad_h > 0 or pad_w > 0:
        x = F.pad(x, (0, 0, 0, pad_w, 0, pad_h))
    Hp, Wp = H + pad_h, W + pad_w

    x = x.view(B, Hp // window_size, window_size, Wp // window_size, window_size, C)
    windows = (
        x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C)
    )
    return windows, (Hp, Wp)


def window_unpartition(windows, window_size, pad_hw, hw):
    """
    Window unpartition into original sequences and removing padding.
    Args:
        x (tensor): input tokens with [B * num_windows, window_size, window_size, C].
        window_size (int): window size.
        pad_hw (Tuple): padded height and width (Hp, Wp).
        hw (Tuple): original height and width (H, W) before padding.
    Returns:
        x: unpartitioned sequences with [B, H, W, C].
    """
    Hp, Wp = pad_hw
    H, W = hw
    B = windows.shape[0] // (Hp * Wp // window_size // window_size)
    x = windows.view(
        B, Hp // window_size, Wp // window_size, window_size, window_size, -1
    )
    x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, Hp, Wp, -1)

    if Hp > H or Wp > W:
        x = x[:, :H, :W, :].contiguous()
    return x


class PatchEmbed(nn.Module):
    """
    Image to Patch Embedding.
    """

    def __init__(
        self,
        kernel_size: Tuple[int, ...] = (7, 7),
        stride: Tuple[int, ...] = (4, 4),
        padding: Tuple[int, ...] = (3, 3),
        in_chans: int = 3,
        embed_dim: int = 768,
    ):
        """
        Args:
            kernel_size (Tuple): kernel size of the projection layer.
            stride (Tuple): stride of the projection layer.
            padding (Tuple): padding size of the projection layer.
            in_chans (int): Number of input image channels.
            embed_dim (int):  embed_dim (int): Patch embedding dimension.
        """
        super().__init__()
        self.proj = nn.Conv2d(
            in_chans, embed_dim, kernel_size=kernel_size, stride=stride, padding=padding
        )

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        x = self.proj(x)
        # B C H W -> B H W C
        x = x.permute(0, 2, 3, 1)
        return x

def do_pool(x: torch.Tensor, pool: nn.Module, norm: nn.Module = None) -> torch.Tensor:
    if pool is None:
        return x
    # (B, H, W, C) -> (B, C, H, W)
    x = x.permute(0, 3, 1, 2)
    x = pool(x)
    # (B, C, H', W') -> (B, H', W', C)
    x = x.permute(0, 2, 3, 1)
    if norm:
        x = norm(x)

    return x


class MultiScaleAttention(nn.Module):
    def __init__(
        self,
        dim: int,
        dim_out: int,
        num_heads: int,
        q_pool: nn.Module = None,
    ):
        super().__init__()

        self.dim = dim
        self.dim_out = dim_out

        self.num_heads = num_heads
        head_dim = dim_out // num_heads
        self.scale = head_dim**-0.5

        self.q_pool = q_pool
        self.qkv = nn.Linear(dim, dim_out * 3)
        self.proj = nn.Linear(dim_out, dim_out)

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        B, H, W, _ = x.shape
        # qkv with shape (B, H * W, 3, nHead, C)
        qkv = self.qkv(x).reshape(B, H * W, 3, self.num_heads, -1)
        # q, k, v with shape (B, H * W, nheads, C)
        q, k, v = torch.unbind(qkv, 2)

        # Q pooling (for downsample at stage changes)
        if self.q_pool:
            q = do_pool(q.reshape(B, H, W, -1), self.q_pool)
            H, W = q.shape[1:3]  # downsampled shape
            q = q.reshape(B, H * W, self.num_heads, -1)

        # Torch's SDPA expects [B, nheads, H*W, C] so we transpose
        x = F.scaled_dot_product_attention(
            q.transpose(1, 2),
            k.transpose(1, 2),
            v.transpose(1, 2),
        )
        # Transpose back
        x = x.transpose(1, 2)
        x = x.reshape(B, H, W, -1)

        x = self.proj(x)

        return x


class MultiScaleBlock(nn.Module):
    def __init__(
        self,
        dim: int,
        dim_out: int,
        num_heads: int,
        mlp_ratio: float = 4.0,
        drop_path: float = 0.0,
        norm_layer: Union[nn.Module, str] = "LayerNorm",
        q_stride: Tuple[int, int] = None,
        act_layer: nn.Module = nn.GELU,
        window_size: int = 0,
    ):
        super().__init__()

        if isinstance(norm_layer, str):
            norm_layer = partial(getattr(nn, norm_layer), eps=1e-6)

        self.dim = dim
        self.dim_out = dim_out
        self.norm1 = norm_layer(dim)

        self.window_size = window_size

        self.pool, self.q_stride = None, q_stride
        if self.q_stride:
            self.pool = nn.MaxPool2d(
                kernel_size=q_stride, stride=q_stride, ceil_mode=False
            )

        self.attn = MultiScaleAttention(
            dim,
            dim_out,
            num_heads=num_heads,
            q_pool=self.pool,
        )
        self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()

        self.norm2 = norm_layer(dim_out)
        self.mlp = MLP(
            dim_out,
            int(dim_out * mlp_ratio),
            dim_out,
            num_layers=2,
            activation=act_layer,
        )

        if dim != dim_out:
            self.proj = nn.Linear(dim, dim_out)

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        shortcut = x  # B, H, W, C
        x = self.norm1(x)

        # Skip connection
        if self.dim != self.dim_out:
            shortcut = do_pool(self.proj(x), self.pool)

        # Window partition
        window_size = self.window_size
        if window_size > 0:
            H, W = x.shape[1], x.shape[2]
            x, pad_hw = window_partition(x, window_size)

        # Window Attention + Q Pooling (if stage change)
        x = self.attn(x)
        if self.q_stride:
            # Shapes have changed due to Q pooling
            window_size = self.window_size // self.q_stride[0]
            H, W = shortcut.shape[1:3]

            pad_h = (window_size - H % window_size) % window_size
            pad_w = (window_size - W % window_size) % window_size
            pad_hw = (H + pad_h, W + pad_w)

        # Reverse window partition
        if self.window_size > 0:
            x = window_unpartition(x, window_size, pad_hw, (H, W))

        x = shortcut + self.drop_path(x)
        # MLP
        x = x + self.drop_path(self.mlp(self.norm2(x)))
        return x


class Hiera(nn.Module):
    """
    Reference: https://arxiv.org/abs/2306.00989
    """

    def __init__(
        self,
        embed_dim: int = 96,  # initial embed dim
        num_heads: int = 1,  # initial number of heads
        drop_path_rate: float = 0.0,  # stochastic depth
        q_pool: int = 3,  # number of q_pool stages
        q_stride: Tuple[int, int] = (2, 2),  # downsample stride bet. stages
        stages: Tuple[int, ...] = (2, 3, 16, 3),  # blocks per stage
        dim_mul: float = 2.0,  # dim_mul factor at stage shift
        head_mul: float = 2.0,  # head_mul factor at stage shift
        window_pos_embed_bkg_spatial_size: Tuple[int, int] = (14, 14),
        # window size per stage, when not using global att.
        window_spec: Tuple[int, ...] = (
            8,
            4,
            14,
            7,
        ),
        # global attn in these blocks
        global_att_blocks: Tuple[int, ...] = (
            12,
            16,
            20,
        ),
        return_interm_layers=True,  # return feats from every stage
    ):
        super().__init__()

        assert len(stages) == len(window_spec)
        self.window_spec = window_spec

        depth = sum(stages)
        self.q_stride = q_stride
        self.stage_ends = [sum(stages[:i]) - 1 for i in range(1, len(stages) + 1)]
        assert 0 <= q_pool <= len(self.stage_ends[:-1])
        self.q_pool_blocks = [x + 1 for x in self.stage_ends[:-1]][:q_pool]
        self.return_interm_layers = return_interm_layers

        self.patch_embed = PatchEmbed(
            embed_dim=embed_dim,
        )
        # Which blocks have global att?
        self.global_att_blocks = global_att_blocks

        # Windowed positional embedding (https://arxiv.org/abs/2311.05613)
        self.window_pos_embed_bkg_spatial_size = window_pos_embed_bkg_spatial_size
        self.pos_embed = nn.Parameter(
            torch.zeros(1, embed_dim, *self.window_pos_embed_bkg_spatial_size)
        )
        self.pos_embed_window = nn.Parameter(
            torch.zeros(1, embed_dim, self.window_spec[0], self.window_spec[0])
        )

        dpr = [
            x.item() for x in torch.linspace(0, drop_path_rate, depth)
        ]  # stochastic depth decay rule

        cur_stage = 1
        self.blocks = nn.ModuleList()

        for i in range(depth):
            dim_out = embed_dim
            # lags by a block, so first block of
            # next stage uses an initial window size
            # of previous stage and final window size of current stage
            window_size = self.window_spec[cur_stage - 1]

            if self.global_att_blocks is not None:
                window_size = 0 if i in self.global_att_blocks else window_size

            if i - 1 in self.stage_ends:
                dim_out = int(embed_dim * dim_mul)
                num_heads = int(num_heads * head_mul)
                cur_stage += 1

            block = MultiScaleBlock(
                dim=embed_dim,
                dim_out=dim_out,
                num_heads=num_heads,
                drop_path=dpr[i],
                q_stride=self.q_stride if i in self.q_pool_blocks else None,
                window_size=window_size,
            )

            embed_dim = dim_out
            self.blocks.append(block)

        self.channel_list = (
            [self.blocks[i].dim_out for i in self.stage_ends[::-1]]
            if return_interm_layers
            else [self.blocks[-1].dim_out]
        )

    def _get_pos_embed(self, hw: Tuple[int, int]) -> torch.Tensor:
        h, w = hw
        window_embed = self.pos_embed_window
        pos_embed = F.interpolate(self.pos_embed, size=(h, w), mode="bicubic")
        pos_embed = pos_embed + window_embed.tile(
            [x // y for x, y in zip(pos_embed.shape, window_embed.shape)]
        )
        pos_embed = pos_embed.permute(0, 2, 3, 1)
        return pos_embed

    def forward(self, x: torch.Tensor) -> List[torch.Tensor]:
        x = self.patch_embed(x)
        # x: (B, H, W, C)

        # Add pos embed
        x = x + self._get_pos_embed(x.shape[1:3])

        outputs = []
        for i, blk in enumerate(self.blocks):
            x = blk(x)
            if (i == self.stage_ends[-1]) or (
                i in self.stage_ends and self.return_interm_layers
            ):
                feats = x.permute(0, 3, 1, 2)
                outputs.append(feats)

        return outputs

class TwoWayTransformer(nn.Module):
    def __init__(
        self,
        depth: int,
        embedding_dim: int,
        num_heads: int,
        mlp_dim: int,
        activation: Type[nn.Module] = nn.ReLU,
        attention_downsample_rate: int = 2,
    ) -> None:
        """
        A transformer decoder that attends to an input image using
        queries whose positional embedding is supplied.

        Args:
          depth (int): number of layers in the transformer
          embedding_dim (int): the channel dimension for the input embeddings
          num_heads (int): the number of heads for multihead attention. Must
            divide embedding_dim
          mlp_dim (int): the channel dimension internal to the MLP block
          activation (nn.Module): the activation to use in the MLP block
        """
        super().__init__()
        self.depth = depth
        self.embedding_dim = embedding_dim
        self.num_heads = num_heads
        self.mlp_dim = mlp_dim
        self.layers = nn.ModuleList()

        for i in range(depth):
            self.layers.append(
                TwoWayAttentionBlock(
                    embedding_dim=embedding_dim,
                    num_heads=num_heads,
                    mlp_dim=mlp_dim,
                    activation=activation,
                    attention_downsample_rate=attention_downsample_rate,
                    skip_first_layer_pe=(i == 0),
                )
            )

        self.final_attn_token_to_image = Attention(
            embedding_dim, num_heads, downsample_rate=attention_downsample_rate
        )
        self.norm_final_attn = nn.LayerNorm(embedding_dim)

    def forward(
        self,
        image_embedding: Tensor,
        image_pe: Tensor,
        point_embedding: Tensor,
    ) -> Tuple[Tensor, Tensor]:
        """
        Args:
          image_embedding (torch.Tensor): image to attend to. Should be shape
            B x embedding_dim x h x w for any h and w.
          image_pe (torch.Tensor): the positional encoding to add to the image. Must
            have the same shape as image_embedding.
          point_embedding (torch.Tensor): the embedding to add to the query points.
            Must have shape B x N_points x embedding_dim for any N_points.

        Returns:
          torch.Tensor: the processed point_embedding
          torch.Tensor: the processed image_embedding
        """
        # BxCxHxW -> BxHWxC == B x N_image_tokens x C
        bs, c, h, w = image_embedding.shape
        image_embedding = image_embedding.flatten(2).permute(0, 2, 1)
        image_pe = image_pe.flatten(2).permute(0, 2, 1)

        # Prepare queries
        queries = point_embedding
        keys = image_embedding

        # Apply transformer blocks and final layernorm
        for layer in self.layers:
            queries, keys = layer(
                queries=queries,
                keys=keys,
                query_pe=point_embedding,
                key_pe=image_pe,
            )

        # Apply the final attention layer from the points to the image
        q = queries + point_embedding
        k = keys + image_pe
        attn_out = self.final_attn_token_to_image(q=q, k=k, v=keys)
        queries = queries + attn_out
        queries = self.norm_final_attn(queries)

        return queries, keys


class TwoWayAttentionBlock(nn.Module):
    def __init__(
        self,
        embedding_dim: int,
        num_heads: int,
        mlp_dim: int = 2048,
        activation: Type[nn.Module] = nn.ReLU,
        attention_downsample_rate: int = 2,
        skip_first_layer_pe: bool = False,
    ) -> None:
        """
        A transformer block with four layers: (1) self-attention of sparse
        inputs, (2) cross attention of sparse inputs to dense inputs, (3) mlp
        block on sparse inputs, and (4) cross attention of dense inputs to sparse
        inputs.

        Arguments:
          embedding_dim (int): the channel dimension of the embeddings
          num_heads (int): the number of heads in the attention layers
          mlp_dim (int): the hidden dimension of the mlp block
          activation (nn.Module): the activation of the mlp block
          skip_first_layer_pe (bool): skip the PE on the first layer
        """
        super().__init__()
        self.self_attn = Attention(embedding_dim, num_heads)
        self.norm1 = nn.LayerNorm(embedding_dim)

        self.cross_attn_token_to_image = Attention(
            embedding_dim, num_heads, downsample_rate=attention_downsample_rate
        )
        self.norm2 = nn.LayerNorm(embedding_dim)

        self.mlp = MLP(
            embedding_dim, mlp_dim, embedding_dim, num_layers=2, activation=activation
        )
        self.norm3 = nn.LayerNorm(embedding_dim)

        self.norm4 = nn.LayerNorm(embedding_dim)
        self.cross_attn_image_to_token = Attention(
            embedding_dim, num_heads, downsample_rate=attention_downsample_rate
        )

        self.skip_first_layer_pe = skip_first_layer_pe

    def forward(
        self, queries: Tensor, keys: Tensor, query_pe: Tensor, key_pe: Tensor
    ) -> Tuple[Tensor, Tensor]:
        # Self attention block
        if self.skip_first_layer_pe:
            queries = self.self_attn(q=queries, k=queries, v=queries)
        else:
            q = queries + query_pe
            attn_out = self.self_attn(q=q, k=q, v=queries)
            queries = queries + attn_out
        queries = self.norm1(queries)

        # Cross attention block, tokens attending to image embedding
        q = queries + query_pe
        k = keys + key_pe
        attn_out = self.cross_attn_token_to_image(q=q, k=k, v=keys)
        queries = queries + attn_out
        queries = self.norm2(queries)

        # MLP block
        mlp_out = self.mlp(queries)
        queries = queries + mlp_out
        queries = self.norm3(queries)

        # Cross attention block, image embedding attending to tokens
        q = queries + query_pe
        k = keys + key_pe
        attn_out = self.cross_attn_image_to_token(q=k, k=q, v=queries)
        keys = keys + attn_out
        keys = self.norm4(keys)

        return queries, keys


class Attention(nn.Module):
    """
    An attention layer that allows for downscaling the size of the embedding
    after projection to queries, keys, and values.
    """

    def __init__(
        self,
        embedding_dim: int,
        num_heads: int,
        downsample_rate: int = 1,
        dropout: float = 0.0,
        kv_in_dim: int = None,
    ) -> None:
        super().__init__()
        self.embedding_dim = embedding_dim
        self.kv_in_dim = kv_in_dim if kv_in_dim is not None else embedding_dim
        self.internal_dim = embedding_dim // downsample_rate
        self.num_heads = num_heads
        assert (
            self.internal_dim % num_heads == 0
        ), "num_heads must divide embedding_dim."

        self.q_proj = nn.Linear(embedding_dim, self.internal_dim)
        self.k_proj = nn.Linear(self.kv_in_dim, self.internal_dim)
        self.v_proj = nn.Linear(self.kv_in_dim, self.internal_dim)
        self.out_proj = nn.Linear(self.internal_dim, embedding_dim)

        self.dropout_p = dropout

    def _separate_heads(self, x: Tensor, num_heads: int) -> Tensor:
        b, n, c = x.shape
        x = x.reshape(b, n, num_heads, c // num_heads)
        return x.transpose(1, 2)  # B x N_heads x N_tokens x C_per_head

    def _recombine_heads(self, x: Tensor) -> Tensor:
        b, n_heads, n_tokens, c_per_head = x.shape
        x = x.transpose(1, 2)
        return x.reshape(b, n_tokens, n_heads * c_per_head)  # B x N_tokens x C

    def forward(self, q: Tensor, k: Tensor, v: Tensor) -> Tensor:
        # Input projections
        q = self.q_proj(q)
        k = self.k_proj(k)
        v = self.v_proj(v)

        # Separate into heads
        q = self._separate_heads(q, self.num_heads)
        k = self._separate_heads(k, self.num_heads)
        v = self._separate_heads(v, self.num_heads)

        dropout_p = self.dropout_p if self.training else 0.0
        # Attention
        with torch.backends.cuda.sdp_kernel(
            enable_flash=USE_FLASH_ATTN,
            # if Flash attention kernel is off, then math kernel needs to be enabled
            enable_math=(OLD_GPU and dropout_p > 0.0) or MATH_KERNEL_ON,
            enable_mem_efficient=OLD_GPU,
        ):
            out = F.scaled_dot_product_attention(q, k, v, dropout_p=dropout_p)

        out = self._recombine_heads(out)
        out = self.out_proj(out)

        return out


class RoPEAttention(Attention):
    """Attention with rotary position encoding."""

    def __init__(
        self,
        *args,
        rope_theta=10000.0,
        # whether to repeat q rope to match k length
        # this is needed for cross-attention to memories
        rope_k_repeat=False,
        feat_sizes=(32, 32),  # [w, h] for stride 16 feats at 512 resolution
        **kwargs,
    ):
        super().__init__(*args, **kwargs)

        self.compute_cis = partial(
            compute_axial_cis, dim=self.internal_dim // self.num_heads, theta=rope_theta
        )
        freqs_cis = self.compute_cis(end_x=feat_sizes[0], end_y=feat_sizes[1])
        self.freqs_cis = freqs_cis
        self.rope_k_repeat = rope_k_repeat

    def forward(
        self, q: Tensor, k: Tensor, v: Tensor, num_k_exclude_rope: int = 0
    ) -> Tensor:
        # Input projections
        q = self.q_proj(q)
        k = self.k_proj(k)
        v = self.v_proj(v)

        # Separate into heads
        q = self._separate_heads(q, self.num_heads)
        k = self._separate_heads(k, self.num_heads)
        v = self._separate_heads(v, self.num_heads)

        # Apply rotary position encoding
        w = h = math.sqrt(q.shape[-2])
        self.freqs_cis = self.freqs_cis.to(q.device)
        if self.freqs_cis.shape[0] != q.shape[-2]:
            self.freqs_cis = self.compute_cis(end_x=w, end_y=h).to(q.device)
        if q.shape[-2] != k.shape[-2]:
            assert self.rope_k_repeat

        num_k_rope = k.size(-2) - num_k_exclude_rope
        q, k[:, :, :num_k_rope] = apply_rotary_enc(
            q,
            k[:, :, :num_k_rope],
            freqs_cis=self.freqs_cis,
            repeat_freqs_k=self.rope_k_repeat,
        )

        dropout_p = self.dropout_p if self.training else 0.0
        # Attention
        with torch.backends.cuda.sdp_kernel(
            enable_flash=USE_FLASH_ATTN,
            # if Flash attention kernel is off, then math kernel needs to be enabled
            enable_math=(OLD_GPU and dropout_p > 0.0) or MATH_KERNEL_ON,
            enable_mem_efficient=OLD_GPU,
        ):
            out = F.scaled_dot_product_attention(q, k, v, dropout_p=dropout_p)

        out = self._recombine_heads(out)
        out = self.out_proj(out)

        return out


class PromptEncoder(nn.Module):
    def __init__(
        self,
        embed_dim: int,
        image_embedding_size: Tuple[int, int],
        input_image_size: Tuple[int, int],
        mask_in_chans: int,
        activation: Type[nn.Module] = nn.GELU,
    ) -> None:
        """
        Encodes prompts for input to SAM's mask decoder.

        Arguments:
          embed_dim (int): The prompts' embedding dimension
          image_embedding_size (tuple(int, int)): The spatial size of the
            image embedding, as (H, W).
          input_image_size (int): The padded size of the image as input
            to the image encoder, as (H, W).
          mask_in_chans (int): The number of hidden channels used for
            encoding input masks.
          activation (nn.Module): The activation to use when encoding
            input masks.
        """
        super().__init__()
        self.embed_dim = embed_dim
        self.input_image_size = input_image_size
        self.image_embedding_size = image_embedding_size
        self.pe_layer = PositionEmbeddingRandom(embed_dim // 2)

        self.num_point_embeddings: int = 4  # pos/neg point + 2 box corners
        point_embeddings = [
            nn.Embedding(1, embed_dim) for i in range(self.num_point_embeddings)
        ]
        self.point_embeddings = nn.ModuleList(point_embeddings)
        self.not_a_point_embed = nn.Embedding(1, embed_dim)

        self.mask_input_size = (
            4 * image_embedding_size[0],
            4 * image_embedding_size[1],
        )
        self.mask_downscaling = nn.Sequential(
            nn.Conv2d(1, mask_in_chans // 4, kernel_size=2, stride=2),
            LayerNorm2d(mask_in_chans // 4),
            activation(),
            nn.Conv2d(mask_in_chans // 4, mask_in_chans, kernel_size=2, stride=2),
            LayerNorm2d(mask_in_chans),
            activation(),
            nn.Conv2d(mask_in_chans, embed_dim, kernel_size=1),
        )
        self.no_mask_embed = nn.Embedding(1, embed_dim)

    def get_dense_pe(self) -> torch.Tensor:
        """
        Returns the positional encoding used to encode point prompts,
        applied to a dense set of points the shape of the image encoding.

        Returns:
          torch.Tensor: Positional encoding with shape
            1x(embed_dim)x(embedding_h)x(embedding_w)
        """
        return self.pe_layer(self.image_embedding_size).unsqueeze(0)

    def _embed_points(
        self,
        points: torch.Tensor,
        labels: torch.Tensor,
        pad: bool,
    ) -> torch.Tensor:
        """Embeds point prompts."""
        points = points + 0.5  # Shift to center of pixel
        if pad:
            padding_point = torch.zeros((points.shape[0], 1, 2), device=points.device)
            padding_label = -torch.ones((labels.shape[0], 1), device=labels.device)
            points = torch.cat([points, padding_point], dim=1)
            labels = torch.cat([labels, padding_label], dim=1)
        point_embedding = self.pe_layer.forward_with_coords(
            points, self.input_image_size
        )
        point_embedding[labels == -1] = 0.0
        point_embedding[labels == -1] += self.not_a_point_embed.weight
        point_embedding[labels == 0] += self.point_embeddings[0].weight
        point_embedding[labels == 1] += self.point_embeddings[1].weight
        point_embedding[labels == 2] += self.point_embeddings[2].weight
        point_embedding[labels == 3] += self.point_embeddings[3].weight
        return point_embedding

    def _embed_boxes(self, boxes: torch.Tensor) -> torch.Tensor:
        """Embeds box prompts."""
        boxes = boxes + 0.5  # Shift to center of pixel
        coords = boxes.reshape(-1, 2, 2)
        corner_embedding = self.pe_layer.forward_with_coords(
            coords, self.input_image_size
        )
        corner_embedding[:, 0, :] += self.point_embeddings[2].weight
        corner_embedding[:, 1, :] += self.point_embeddings[3].weight
        return corner_embedding

    def _embed_masks(self, masks: torch.Tensor) -> torch.Tensor:
        """Embeds mask inputs."""
        mask_embedding = self.mask_downscaling(masks)
        return mask_embedding

    def _get_batch_size(
        self,
        points: Optional[Tuple[torch.Tensor, torch.Tensor]],
        boxes: Optional[torch.Tensor],
        masks: Optional[torch.Tensor],
    ) -> int:
        """
        Gets the batch size of the output given the batch size of the input prompts.
        """
        if points is not None:
            return points[0].shape[0]
        elif boxes is not None:
            return boxes.shape[0]
        elif masks is not None:
            return masks.shape[0]
        else:
            return 1

    def _get_device(self) -> torch.device:
        return self.point_embeddings[0].weight.device

    def forward(
        self,
        points: Optional[Tuple[torch.Tensor, torch.Tensor]],
        boxes: Optional[torch.Tensor],
        masks: Optional[torch.Tensor],
    ) -> Tuple[torch.Tensor, torch.Tensor]:
        """
        Embeds different types of prompts, returning both sparse and dense
        embeddings.

        Arguments:
          points (tuple(torch.Tensor, torch.Tensor) or none): point coordinates
            and labels to embed.
          boxes (torch.Tensor or none): boxes to embed
          masks (torch.Tensor or none): masks to embed

        Returns:
          torch.Tensor: sparse embeddings for the points and boxes, with shape
            BxNx(embed_dim), where N is determined by the number of input points
            and boxes.
          torch.Tensor: dense embeddings for the masks, in the shape
            Bx(embed_dim)x(embed_H)x(embed_W)
        """
        bs = self._get_batch_size(points, boxes, masks)
        sparse_embeddings = torch.empty(
            (bs, 0, self.embed_dim), device=self._get_device()
        )
        if points is not None:
            coords, labels = points
            point_embeddings = self._embed_points(coords, labels, pad=(boxes is None))
            sparse_embeddings = torch.cat([sparse_embeddings, point_embeddings], dim=1)
        if boxes is not None:
            box_embeddings = self._embed_boxes(boxes)
            sparse_embeddings = torch.cat([sparse_embeddings, box_embeddings], dim=1)

        if masks is not None:
            dense_embeddings = self._embed_masks(masks)
        else:
            dense_embeddings = self.no_mask_embed.weight.reshape(1, -1, 1, 1).expand(
                bs, -1, self.image_embedding_size[0], self.image_embedding_size[1]
            )

        return sparse_embeddings, dense_embeddings

class PositionEmbeddingSine(nn.Module):
    """
    This is a more standard version of the position embedding, very similar to the one
    used by the Attention is all you need paper, generalized to work on images.
    """

    def __init__(
        self,
        num_pos_feats,
        temperature: int = 10000,
        normalize: bool = True,
        scale: Optional[float] = None,
    ):
        super().__init__()
        assert num_pos_feats % 2 == 0, "Expecting even model width"
        self.num_pos_feats = num_pos_feats // 2
        self.temperature = temperature
        self.normalize = normalize
        if scale is not None and normalize is False:
            raise ValueError("normalize should be True if scale is passed")
        if scale is None:
            scale = 2 * math.pi
        self.scale = scale

        self.cache = {}

    def _encode_xy(self, x, y):
        # The positions are expected to be normalized
        assert len(x) == len(y) and x.ndim == y.ndim == 1
        x_embed = x * self.scale
        y_embed = y * self.scale

        dim_t = torch.arange(self.num_pos_feats, dtype=torch.float32, device=x.device)
        dim_t = self.temperature ** (2 * (dim_t // 2) / self.num_pos_feats)

        pos_x = x_embed[:, None] / dim_t
        pos_y = y_embed[:, None] / dim_t
        pos_x = torch.stack(
            (pos_x[:, 0::2].sin(), pos_x[:, 1::2].cos()), dim=2
        ).flatten(1)
        pos_y = torch.stack(
            (pos_y[:, 0::2].sin(), pos_y[:, 1::2].cos()), dim=2
        ).flatten(1)
        return pos_x, pos_y

    @torch.no_grad()
    def encode_boxes(self, x, y, w, h):
        pos_x, pos_y = self._encode_xy(x, y)
        pos = torch.cat((pos_y, pos_x, h[:, None], w[:, None]), dim=1)
        return pos

    encode = encode_boxes  # Backwards compatibility

    @torch.no_grad()
    def encode_points(self, x, y, labels):
        (bx, nx), (by, ny), (bl, nl) = x.shape, y.shape, labels.shape
        assert bx == by and nx == ny and bx == bl and nx == nl
        pos_x, pos_y = self._encode_xy(x.flatten(), y.flatten())
        pos_x, pos_y = pos_x.reshape(bx, nx, -1), pos_y.reshape(by, ny, -1)
        pos = torch.cat((pos_y, pos_x, labels[:, :, None]), dim=2)
        return pos

    @torch.no_grad()
    def forward(self, x: torch.Tensor):
        cache_key = (x.shape[-2], x.shape[-1])
        if cache_key in self.cache:
            return self.cache[cache_key][None].repeat(x.shape[0], 1, 1, 1)
        y_embed = (
            torch.arange(1, x.shape[-2] + 1, dtype=torch.float32, device=x.device)
            .view(1, -1, 1)
            .repeat(x.shape[0], 1, x.shape[-1])
        )
        x_embed = (
            torch.arange(1, x.shape[-1] + 1, dtype=torch.float32, device=x.device)
            .view(1, 1, -1)
            .repeat(x.shape[0], x.shape[-2], 1)
        )

        if self.normalize:
            eps = 1e-6
            y_embed = y_embed / (y_embed[:, -1:, :] + eps) * self.scale
            x_embed = x_embed / (x_embed[:, :, -1:] + eps) * self.scale

        dim_t = torch.arange(self.num_pos_feats, dtype=torch.float32, device=x.device)
        dim_t = self.temperature ** (2 * (dim_t // 2) / self.num_pos_feats)

        pos_x = x_embed[:, :, :, None] / dim_t
        pos_y = y_embed[:, :, :, None] / dim_t
        pos_x = torch.stack(
            (pos_x[:, :, :, 0::2].sin(), pos_x[:, :, :, 1::2].cos()), dim=4
        ).flatten(3)
        pos_y = torch.stack(
            (pos_y[:, :, :, 0::2].sin(), pos_y[:, :, :, 1::2].cos()), dim=4
        ).flatten(3)
        pos = torch.cat((pos_y, pos_x), dim=3).permute(0, 3, 1, 2)
        self.cache[cache_key] = pos[0]
        return pos


class PositionEmbeddingRandom(nn.Module):
    """
    Positional encoding using random spatial frequencies.
    """

    def __init__(self, num_pos_feats: int = 64, scale: Optional[float] = None) -> None:
        super().__init__()
        if scale is None or scale <= 0.0:
            scale = 1.0
        self.register_buffer(
            "positional_encoding_gaussian_matrix",
            scale * torch.randn((2, num_pos_feats)),
        )
        self.first = True

    def _pe_encoding(self, coords: torch.Tensor) -> torch.Tensor:
        """Positionally encode points that are normalized to [0,1]."""
        # assuming coords are in [0, 1]^2 square and have d_1 x ... x d_n x 2 shape
        coords = 2 * coords - 1
        coords = coords.to(self.positional_encoding_gaussian_matrix.dtype)
        if self.first:
            self.positional_encoding_gaussian_matrix = self.positional_encoding_gaussian_matrix.to(coords.device)
            self.first = False
        coords = coords @ self.positional_encoding_gaussian_matrix
        coords = 2 * np.pi * coords
        # outputs d_1 x ... x d_n x C shape
        return torch.cat([torch.sin(coords), torch.cos(coords)], dim=-1)

    def forward(self, size: Tuple[int, int]) -> torch.Tensor:
        """Generate positional encoding for a grid of the specified size."""
        h, w = size
        device: Any = self.positional_encoding_gaussian_matrix.device
        grid = torch.ones((h, w), device=device, dtype=torch.float32)
        y_embed = grid.cumsum(dim=0) - 0.5
        x_embed = grid.cumsum(dim=1) - 0.5
        y_embed = y_embed / h
        x_embed = x_embed / w

        pe = self._pe_encoding(torch.stack([x_embed, y_embed], dim=-1))
        return pe.permute(2, 0, 1)  # C x H x W

    def forward_with_coords(
        self, coords_input: torch.Tensor, image_size: Tuple[int, int]
    ) -> torch.Tensor:
        """Positionally encode points that are not normalized to [0,1]."""
        coords = coords_input.clone()
        coords[:, :, 0] = coords[:, :, 0] / image_size[1]
        coords[:, :, 1] = coords[:, :, 1] / image_size[0]
        return self._pe_encoding(coords.to(torch.float))  # B x N x C


# Rotary Positional Encoding, adapted from:
# 1. https://github.com/meta-llama/codellama/blob/main/llama/model.py
# 2. https://github.com/naver-ai/rope-vit
# 3. https://github.com/lucidrains/rotary-embedding-torch


def init_t_xy(end_x: int, end_y: int):
    t = torch.arange(end_x * end_y, dtype=torch.float32)
    t_x = (t % end_x).float()
    t_y = torch.div(t, end_x, rounding_mode="floor").float()
    return t_x, t_y


def compute_axial_cis(dim: int, end_x: int, end_y: int, theta: float = 10000.0):
    freqs_x = 1.0 / (theta ** (torch.arange(0, dim, 4)[: (dim // 4)].float() / dim))
    freqs_y = 1.0 / (theta ** (torch.arange(0, dim, 4)[: (dim // 4)].float() / dim))

    t_x, t_y = init_t_xy(end_x, end_y)
    freqs_x = torch.outer(t_x, freqs_x)
    freqs_y = torch.outer(t_y, freqs_y)
    freqs_cis_x = torch.polar(torch.ones_like(freqs_x), freqs_x)
    freqs_cis_y = torch.polar(torch.ones_like(freqs_y), freqs_y)
    return torch.cat([freqs_cis_x, freqs_cis_y], dim=-1)


def reshape_for_broadcast(freqs_cis: torch.Tensor, x: torch.Tensor):
    ndim = x.ndim
    assert 0 <= 1 < ndim
    assert freqs_cis.shape == (x.shape[-2], x.shape[-1])
    shape = [d if i >= ndim - 2 else 1 for i, d in enumerate(x.shape)]
    return freqs_cis.view(*shape)


def apply_rotary_enc(
    xq: torch.Tensor,
    xk: torch.Tensor,
    freqs_cis: torch.Tensor,
    repeat_freqs_k: bool = False,
):
    xq_ = torch.view_as_complex(xq.float().reshape(*xq.shape[:-1], -1, 2))
    xk_ = (
        torch.view_as_complex(xk.float().reshape(*xk.shape[:-1], -1, 2))
        if xk.shape[-2] != 0
        else None
    )
    freqs_cis = reshape_for_broadcast(freqs_cis, xq_)
    xq_out = torch.view_as_real(xq_ * freqs_cis).flatten(3)
    if xk_ is None:
        # no keys to rotate, due to dropout
        return xq_out.type_as(xq).to(xq.device), xk
    # repeat freqs along seq_len dim to match k seq_len
    if repeat_freqs_k:
        r = xk_.shape[-2] // xq_.shape[-2]
        freqs_cis = freqs_cis.repeat(*([1] * (freqs_cis.ndim - 2)), r, 1)
    xk_out = torch.view_as_real(xk_ * freqs_cis).flatten(3)
    return xq_out.type_as(xq).to(xq.device), xk_out.type_as(xk).to(xk.device)


class MaskDecoder(nn.Module):
    def __init__(
        self,
        *,
        transformer_dim: int,
        transformer: nn.Module,
        num_multimask_outputs: int = 3,
        activation: Type[nn.Module] = nn.GELU,
        iou_head_depth: int = 3,
        iou_head_hidden_dim: int = 256,
        use_high_res_features: bool = False,
        iou_prediction_use_sigmoid=False,
        dynamic_multimask_via_stability=False,
        dynamic_multimask_stability_delta=0.05,
        dynamic_multimask_stability_thresh=0.98,
        pred_obj_scores: bool = False,
        pred_obj_scores_mlp: bool = False,
        use_multimask_token_for_obj_ptr: bool = False,
    ) -> None:
        """
        Predicts masks given an image and prompt embeddings, using a
        transformer architecture.

        Arguments:
          transformer_dim (int): the channel dimension of the transformer
          transformer (nn.Module): the transformer used to predict masks
          num_multimask_outputs (int): the number of masks to predict
            when disambiguating masks
          activation (nn.Module): the type of activation to use when
            upscaling masks
          iou_head_depth (int): the depth of the MLP used to predict
            mask quality
          iou_head_hidden_dim (int): the hidden dimension of the MLP
            used to predict mask quality
        """
        super().__init__()
        self.transformer_dim = transformer_dim
        self.transformer = transformer

        self.num_multimask_outputs = num_multimask_outputs

        self.iou_token = nn.Embedding(1, transformer_dim)
        self.num_mask_tokens = num_multimask_outputs + 1
        self.mask_tokens = nn.Embedding(self.num_mask_tokens, transformer_dim)

        self.pred_obj_scores = pred_obj_scores
        if self.pred_obj_scores:
            self.obj_score_token = nn.Embedding(1, transformer_dim)
        self.use_multimask_token_for_obj_ptr = use_multimask_token_for_obj_ptr

        self.output_upscaling = nn.Sequential(
            nn.ConvTranspose2d(
                transformer_dim, transformer_dim // 4, kernel_size=2, stride=2
            ),
            LayerNorm2d(transformer_dim // 4),
            activation(),
            nn.ConvTranspose2d(
                transformer_dim // 4, transformer_dim // 8, kernel_size=2, stride=2
            ),
            activation(),
        )
        self.use_high_res_features = use_high_res_features
        if use_high_res_features:
            self.conv_s0 = nn.Conv2d(
                transformer_dim, transformer_dim // 8, kernel_size=1, stride=1
            )
            self.conv_s1 = nn.Conv2d(
                transformer_dim, transformer_dim // 4, kernel_size=1, stride=1
            )

        self.output_hypernetworks_mlps = nn.ModuleList(
            [
                MLP(transformer_dim, transformer_dim, transformer_dim // 8, 3)
                for i in range(self.num_mask_tokens)
            ]
        )

        self.iou_prediction_head = MLP(
            transformer_dim,
            iou_head_hidden_dim,
            self.num_mask_tokens,
            iou_head_depth,
            sigmoid_output=iou_prediction_use_sigmoid,
        )
        if self.pred_obj_scores:
            self.pred_obj_score_head = nn.Linear(transformer_dim, 1)
            if pred_obj_scores_mlp:
                self.pred_obj_score_head = MLP(transformer_dim, transformer_dim, 1, 3)

        # When outputting a single mask, optionally we can dynamically fall back to the best
        # multimask output token if the single mask output token gives low stability scores.
        self.dynamic_multimask_via_stability = dynamic_multimask_via_stability
        self.dynamic_multimask_stability_delta = dynamic_multimask_stability_delta
        self.dynamic_multimask_stability_thresh = dynamic_multimask_stability_thresh

    def forward(
        self,
        image_embeddings: torch.Tensor,
        image_pe: torch.Tensor,
        sparse_prompt_embeddings: torch.Tensor,
        dense_prompt_embeddings: torch.Tensor,
        multimask_output: bool,
        repeat_image: bool,
        high_res_features: Optional[List[torch.Tensor]] = None,
    ) -> Tuple[torch.Tensor, torch.Tensor]:
        """
        Predict masks given image and prompt embeddings.

        Arguments:
          image_embeddings (torch.Tensor): the embeddings from the image encoder
          image_pe (torch.Tensor): positional encoding with the shape of image_embeddings
          sparse_prompt_embeddings (torch.Tensor): the embeddings of the points and boxes
          dense_prompt_embeddings (torch.Tensor): the embeddings of the mask inputs
          multimask_output (bool): Whether to return multiple masks or a single
            mask.

        Returns:
          torch.Tensor: batched predicted masks
          torch.Tensor: batched predictions of mask quality
          torch.Tensor: batched SAM token for mask output
        """
        masks, iou_pred, mask_tokens_out, object_score_logits = self.predict_masks(
            image_embeddings=image_embeddings,
            image_pe=image_pe,
            sparse_prompt_embeddings=sparse_prompt_embeddings,
            dense_prompt_embeddings=dense_prompt_embeddings,
            repeat_image=repeat_image,
            high_res_features=high_res_features,
        )

        # Select the correct mask or masks for output
        if multimask_output:
            masks = masks[:, 1:, :, :]
            iou_pred = iou_pred[:, 1:]
        elif self.dynamic_multimask_via_stability and not self.training:
            masks, iou_pred = self._dynamic_multimask_via_stability(masks, iou_pred)
        else:
            masks = masks[:, 0:1, :, :]
            iou_pred = iou_pred[:, 0:1]

        if multimask_output and self.use_multimask_token_for_obj_ptr:
            sam_tokens_out = mask_tokens_out[:, 1:]  # [b, 3, c] shape
        else:
            # Take the mask output token. Here we *always* use the token for single mask output.
            # At test time, even if we track after 1-click (and using multimask_output=True),
            # we still take the single mask token here. The rationale is that we always track
            # after multiple clicks during training, so the past tokens seen during training
            # are always the single mask token (and we'll let it be the object-memory token).
            sam_tokens_out = mask_tokens_out[:, 0:1]  # [b, 1, c] shape

        # Prepare output
        return masks, iou_pred, sam_tokens_out, object_score_logits

    def predict_masks(
        self,
        image_embeddings: torch.Tensor,
        image_pe: torch.Tensor,
        sparse_prompt_embeddings: torch.Tensor,
        dense_prompt_embeddings: torch.Tensor,
        repeat_image: bool,
        high_res_features: Optional[List[torch.Tensor]] = None,
    ) -> Tuple[torch.Tensor, torch.Tensor]:
        """Predicts masks. See 'forward' for more details."""
        # Concatenate output tokens
        s = 0
        if self.pred_obj_scores:
            output_tokens = torch.cat(
                [
                    self.obj_score_token.weight,
                    self.iou_token.weight,
                    self.mask_tokens.weight,
                ],
                dim=0,
            )
            s = 1
        else:
            output_tokens = torch.cat(
                [self.iou_token.weight, self.mask_tokens.weight], dim=0
            )
        output_tokens = output_tokens.unsqueeze(0).expand(
            sparse_prompt_embeddings.size(0), -1, -1
        )
        tokens = torch.cat((output_tokens, sparse_prompt_embeddings), dim=1)

        # Expand per-image data in batch direction to be per-mask
        if repeat_image:
            src = torch.repeat_interleave(image_embeddings, tokens.shape[0], dim=0)
        else:
            assert image_embeddings.shape[0] == tokens.shape[0]
            src = image_embeddings
        src = src + dense_prompt_embeddings
        assert (
            image_pe.size(0) == 1
        ), "image_pe should have size 1 in batch dim (from `get_dense_pe()`)"
        pos_src = torch.repeat_interleave(image_pe, tokens.shape[0], dim=0)
        b, c, h, w = src.shape

        # Run the transformer
        # print('src: ', src.dtype, 'pos_src:', pos_src.dtype, 'tokens:', tokens.dtype)
        _dtype = pos_src.dtype
        src = src.to(_dtype)
        tokens = tokens.to(_dtype)
        hs, src = self.transformer(src, pos_src, tokens)
        iou_token_out = hs[:, s, :]
        mask_tokens_out = hs[:, s + 1 : (s + 1 + self.num_mask_tokens), :]

        # Upscale mask embeddings and predict masks using the mask tokens
        src = src.transpose(1, 2).view(b, c, h, w)
        if not self.use_high_res_features:
            upscaled_embedding = self.output_upscaling(src)
        else:
            dc1, ln1, act1, dc2, act2 = self.output_upscaling
            feat_s0, feat_s1 = high_res_features
            upscaled_embedding = act1(ln1(dc1(src) + feat_s1))
            upscaled_embedding = act2(dc2(upscaled_embedding) + feat_s0)

        hyper_in_list: List[torch.Tensor] = []
        for i in range(self.num_mask_tokens):
            hyper_in_list.append(
                self.output_hypernetworks_mlps[i](mask_tokens_out[:, i, :])
            )
        hyper_in = torch.stack(hyper_in_list, dim=1)
        b, c, h, w = upscaled_embedding.shape
        masks = (hyper_in @ upscaled_embedding.view(b, c, h * w)).view(b, -1, h, w)

        # Generate mask quality predictions
        iou_pred = self.iou_prediction_head(iou_token_out)
        if self.pred_obj_scores:
            assert s == 1
            object_score_logits = self.pred_obj_score_head(hs[:, 0, :])
        else:
            # Obj scores logits - default to 10.0, i.e. assuming the object is present, sigmoid(10)=1
            object_score_logits = 10.0 * iou_pred.new_ones(iou_pred.shape[0], 1)

        return masks, iou_pred, mask_tokens_out, object_score_logits

    def _get_stability_scores(self, mask_logits):
        """
        Compute stability scores of the mask logits based on the IoU between upper and
        lower thresholds, similar to https://github.com/fairinternal/onevision/pull/568.
        """
        mask_logits = mask_logits.flatten(-2)
        stability_delta = self.dynamic_multimask_stability_delta
        area_i = torch.sum(mask_logits > stability_delta, dim=-1).float()
        area_u = torch.sum(mask_logits > -stability_delta, dim=-1).float()
        stability_scores = torch.where(area_u > 0, area_i / area_u, 1.0)
        return stability_scores

    def _dynamic_multimask_via_stability(self, all_mask_logits, all_iou_scores):
        """
        When outputting a single mask, if the stability score from the current single-mask
        output (based on output token 0) falls below a threshold, we instead select from
        multi-mask outputs (based on output token 1~3) the mask with the highest predicted
        IoU score. This is intended to ensure a valid mask for both clicking and tracking.
        """
        # The best mask from multimask output tokens (1~3)
        multimask_logits = all_mask_logits[:, 1:, :, :]
        multimask_iou_scores = all_iou_scores[:, 1:]
        best_scores_inds = torch.argmax(multimask_iou_scores, dim=-1)
        batch_inds = torch.arange(
            multimask_iou_scores.size(0), device=all_iou_scores.device
        )
        best_multimask_logits = multimask_logits[batch_inds, best_scores_inds]
        best_multimask_logits = best_multimask_logits.unsqueeze(1)
        best_multimask_iou_scores = multimask_iou_scores[batch_inds, best_scores_inds]
        best_multimask_iou_scores = best_multimask_iou_scores.unsqueeze(1)

        # The mask from singlemask output token 0 and its stability score
        singlemask_logits = all_mask_logits[:, 0:1, :, :]
        singlemask_iou_scores = all_iou_scores[:, 0:1]
        stability_scores = self._get_stability_scores(singlemask_logits)
        is_stable = stability_scores >= self.dynamic_multimask_stability_thresh

        # Dynamically fall back to best multimask output upon low stability scores.
        mask_logits_out = torch.where(
            is_stable[..., None, None].expand_as(singlemask_logits),
            singlemask_logits,
            best_multimask_logits,
        )
        iou_scores_out = torch.where(
            is_stable.expand_as(singlemask_iou_scores),
            singlemask_iou_scores,
            best_multimask_iou_scores,
        )
        return mask_logits_out, iou_scores_out

def select_closest_cond_frames(frame_idx, cond_frame_outputs, max_cond_frame_num):
    """
    Select up to `max_cond_frame_num` conditioning frames from `cond_frame_outputs`
    that are temporally closest to the current frame at `frame_idx`. Here, we take
    - a) the closest conditioning frame before `frame_idx` (if any);
    - b) the closest conditioning frame after `frame_idx` (if any);
    - c) any other temporally closest conditioning frames until reaching a total
         of `max_cond_frame_num` conditioning frames.

    Outputs:
    - selected_outputs: selected items (keys & values) from `cond_frame_outputs`.
    - unselected_outputs: items (keys & values) not selected in `cond_frame_outputs`.
    """
    if max_cond_frame_num == -1 or len(cond_frame_outputs) <= max_cond_frame_num:
        selected_outputs = cond_frame_outputs
        unselected_outputs = {}
    else:
        assert max_cond_frame_num >= 2, "we should allow using 2+ conditioning frames"
        selected_outputs = {}

        # the closest conditioning frame before `frame_idx` (if any)
        idx_before = max((t for t in cond_frame_outputs if t < frame_idx), default=None)
        if idx_before is not None:
            selected_outputs[idx_before] = cond_frame_outputs[idx_before]

        # the closest conditioning frame after `frame_idx` (if any)
        idx_after = min((t for t in cond_frame_outputs if t >= frame_idx), default=None)
        if idx_after is not None:
            selected_outputs[idx_after] = cond_frame_outputs[idx_after]

        # add other temporally closest conditioning frames until reaching a total
        # of `max_cond_frame_num` conditioning frames.
        num_remain = max_cond_frame_num - len(selected_outputs)
        inds_remain = sorted(
            (t for t in cond_frame_outputs if t not in selected_outputs),
            key=lambda x: abs(x - frame_idx),
        )[:num_remain]
        selected_outputs.update((t, cond_frame_outputs[t]) for t in inds_remain)
        unselected_outputs = {
            t: v for t, v in cond_frame_outputs.items() if t not in selected_outputs
        }

    return selected_outputs, unselected_outputs


def get_1d_sine_pe(pos_inds, dim, temperature=10000):
    """
    Get 1D sine positional embedding as in the original Transformer paper.
    """
    pe_dim = dim // 2
    dim_t = torch.arange(pe_dim, dtype=torch.float32, device=pos_inds.device)
    dim_t = temperature ** (2 * (dim_t // 2) / pe_dim)

    pos_embed = pos_inds.unsqueeze(-1) / dim_t
    pos_embed = torch.cat([pos_embed.sin(), pos_embed.cos()], dim=-1)
    return pos_embed


def get_activation_fn(activation):
    """Return an activation function given a string"""
    if activation == "relu":
        return F.relu
    if activation == "gelu":
        return F.gelu
    if activation == "glu":
        return F.glu
    raise RuntimeError(f"activation should be relu/gelu, not {activation}.")


def get_clones(module, N):
    return nn.ModuleList([copy.deepcopy(module) for i in range(N)])


class DropPath(nn.Module):
    # adapted from https://github.com/huggingface/pytorch-image-models/blob/main/timm/layers/drop.py
    def __init__(self, drop_prob=0.0, scale_by_keep=True):
        super(DropPath, self).__init__()
        self.drop_prob = drop_prob
        self.scale_by_keep = scale_by_keep

    def forward(self, x):
        if self.drop_prob == 0.0 or not self.training:
            return x
        keep_prob = 1 - self.drop_prob
        shape = (x.shape[0],) + (1,) * (x.ndim - 1)
        random_tensor = x.new_empty(shape).bernoulli_(keep_prob)
        if keep_prob > 0.0 and self.scale_by_keep:
            random_tensor.div_(keep_prob)
        return x * random_tensor


# Lightly adapted from
# https://github.com/facebookresearch/MaskFormer/blob/main/mask_former/modeling/transformer/transformer_predictor.py # noqa
class MLP(nn.Module):
    def __init__(
        self,
        input_dim: int,
        hidden_dim: int,
        output_dim: int,
        num_layers: int,
        activation: nn.Module = nn.ReLU,
        sigmoid_output: bool = False,
    ) -> None:
        super().__init__()
        self.num_layers = num_layers
        h = [hidden_dim] * (num_layers - 1)
        self.layers = nn.ModuleList(
            nn.Linear(n, k) for n, k in zip([input_dim] + h, h + [output_dim])
        )
        self.sigmoid_output = sigmoid_output
        self.act = activation()

    def forward(self, x):
        for i, layer in enumerate(self.layers):
            x = self.act(layer(x)) if i < self.num_layers - 1 else layer(x)
        if self.sigmoid_output:
            x = F.sigmoid(x)
        return x


# From https://github.com/facebookresearch/detectron2/blob/main/detectron2/layers/batch_norm.py # noqa
# Itself from https://github.com/facebookresearch/ConvNeXt/blob/d1fa8f6fef0a165b27399986cc2bdacc92777e40/models/convnext.py#L119  # noqa
class LayerNorm2d(nn.Module):
    def __init__(self, num_channels: int, eps: float = 1e-6) -> None:
        super().__init__()
        self.weight = nn.Parameter(torch.ones(num_channels))
        self.bias = nn.Parameter(torch.zeros(num_channels))
        self.eps = eps

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        u = x.mean(1, keepdim=True)
        s = (x - u).pow(2).mean(1, keepdim=True)
        x = (x - u) / torch.sqrt(s + self.eps)
        x = self.weight[:, None, None] * x + self.bias[:, None, None]
        return x

class SAM2Base_(torch.nn.Module):
    def __init__(
        self,
        image_encoder,
        memory_attention,
        memory_encoder,
        num_maskmem=7,  # default 1 input frame + 6 previous frames
        image_size=512,
        backbone_stride=16,  # stride of the image backbone output
        sigmoid_scale_for_mem_enc=1.0,  # scale factor for mask sigmoid prob
        sigmoid_bias_for_mem_enc=0.0,  # bias factor for mask sigmoid prob
        # During evaluation, whether to binarize the sigmoid mask logits on interacted frames with clicks
        binarize_mask_from_pts_for_mem_enc=False,
        use_mask_input_as_output_without_sam=False,  # on frames with mask input, whether to directly output the input mask without using a SAM prompt encoder + mask decoder
        # The maximum number of conditioning frames to participate in the memory attention (-1 means no limit; if there are more conditioning frames than this limit,
        # we only cross-attend to the temporally closest `max_cond_frames_in_attn` conditioning frames in the encoder when tracking each frame). This gives the model
        # a temporal locality when handling a large number of annotated frames (since closer frames should be more important) and also avoids GPU OOM.
        max_cond_frames_in_attn=-1,
        # on the first frame, whether to directly add the no-memory embedding to the image feature
        # (instead of using the transformer encoder)
        directly_add_no_mem_embed=False,
        # whether to use high-resolution feature maps in the SAM mask decoder
        use_high_res_features_in_sam=False,
        # whether to output multiple (3) masks for the first click on initial conditioning frames
        multimask_output_in_sam=False,
        # the minimum and maximum number of clicks to use multimask_output_in_sam (only relevant when `multimask_output_in_sam=True`;
        # default is 1 for both, meaning that only the first click gives multimask output; also note that a box counts as two points)
        multimask_min_pt_num=1,
        multimask_max_pt_num=1,
        # whether to also use multimask output for tracking (not just for the first click on initial conditioning frames; only relevant when `multimask_output_in_sam=True`)
        multimask_output_for_tracking=False,
        # Whether to use multimask tokens for obj ptr; Only relevant when both
        # use_obj_ptrs_in_encoder=True and multimask_output_for_tracking=True
        use_multimask_token_for_obj_ptr: bool = False,
        # whether to use sigmoid to restrict ious prediction to [0-1]
        iou_prediction_use_sigmoid=False,
        # The memory bank's temporal stride during evaluation (i.e. the `r` parameter in XMem and Cutie; XMem and Cutie use r=5).
        # For r>1, the (self.num_maskmem - 1) non-conditioning memory frames consist of
        # (self.num_maskmem - 2) nearest frames from every r-th frames, plus the last frame.
        memory_temporal_stride_for_eval=1,
        # if `add_all_frames_to_correct_as_cond` is True, we also append to the conditioning frame list any frame that receives a later correction click
        # if `add_all_frames_to_correct_as_cond` is False, we conditioning frame list to only use those initial conditioning frames
        add_all_frames_to_correct_as_cond=False,
        # whether to apply non-overlapping constraints on the object masks in the memory encoder during evaluation (to avoid/alleviate superposing masks)
        non_overlap_masks_for_mem_enc=False,
        # whether to cross-attend to object pointers from other frames (based on SAM output tokens) in the encoder
        use_obj_ptrs_in_encoder=False,
        # the maximum number of object pointers from other frames in encoder cross attention (only relevant when `use_obj_ptrs_in_encoder=True`)
        max_obj_ptrs_in_encoder=16,
        # whether to add temporal positional encoding to the object pointers in the encoder (only relevant when `use_obj_ptrs_in_encoder=True`)
        add_tpos_enc_to_obj_ptrs=True,
        # whether to add an extra linear projection layer for the temporal positional encoding in the object pointers to avoid potential interference
        # with spatial positional encoding (only relevant when both `use_obj_ptrs_in_encoder=True` and `add_tpos_enc_to_obj_ptrs=True`)
        proj_tpos_enc_in_obj_ptrs=False,
        # whether to only attend to object pointers in the past (before the current frame) in the encoder during evaluation
        # (only relevant when `use_obj_ptrs_in_encoder=True`; this might avoid pointer information too far in the future to distract the initial tracking)
        only_obj_ptrs_in_the_past_for_eval=False,
        # Whether to predict if there is an object in the frame
        pred_obj_scores: bool = False,
        # Whether to use an MLP to predict object scores
        pred_obj_scores_mlp: bool = False,
        # Only relevant if pred_obj_scores=True and use_obj_ptrs_in_encoder=True;
        # Whether to have a fixed no obj pointer when there is no object present
        # or to use it as an additive embedding with obj_ptr produced by decoder
        fixed_no_obj_ptr: bool = False,
        # Soft no object, i.e. mix in no_obj_ptr softly,
        # hope to make recovery easier if there is a mistake and mitigate accumulation of errors
        soft_no_obj_ptr: bool = False,
        use_mlp_for_obj_ptr_proj: bool = False,
        # extra arguments used to construct the SAM mask decoder; if not None, it should be a dict of kwargs to be passed into `MaskDecoder` class.
        sam_mask_decoder_extra_args=None,
        compile_image_encoder: bool = False,
    ):
        super().__init__()

        # Part 1: the image backbone
        self.image_encoder = image_encoder
        # Use level 0, 1, 2 for high-res setting, or just level 2 for the default setting
        self.use_high_res_features_in_sam = use_high_res_features_in_sam
        self.num_feature_levels = 3 if use_high_res_features_in_sam else 1
        self.use_obj_ptrs_in_encoder = use_obj_ptrs_in_encoder
        self.max_obj_ptrs_in_encoder = max_obj_ptrs_in_encoder
        if use_obj_ptrs_in_encoder:
            # A conv layer to downsample the mask prompt to stride 4 (the same stride as
            # low-res SAM mask logits) and to change its scales from 0~1 to SAM logit scale,
            # so that it can be fed into the SAM mask decoder to generate a pointer.
            self.mask_downsample = torch.nn.Conv2d(1, 1, kernel_size=4, stride=4)
        self.add_tpos_enc_to_obj_ptrs = add_tpos_enc_to_obj_ptrs
        if proj_tpos_enc_in_obj_ptrs:
            assert add_tpos_enc_to_obj_ptrs  # these options need to be used together
        self.proj_tpos_enc_in_obj_ptrs = proj_tpos_enc_in_obj_ptrs
        self.only_obj_ptrs_in_the_past_for_eval = only_obj_ptrs_in_the_past_for_eval

        # Part 2: memory attention to condition current frame's visual features
        # with memories (and obj ptrs) from past frames
        self.memory_attention = memory_attention
        self.hidden_dim = memory_attention.d_model

        # Part 3: memory encoder for the previous frame's outputs
        self.memory_encoder = memory_encoder
        self.mem_dim = self.hidden_dim
        if hasattr(self.memory_encoder, "out_proj") and hasattr(
            self.memory_encoder.out_proj, "weight"
        ):
            # if there is compression of memories along channel dim
            self.mem_dim = self.memory_encoder.out_proj.weight.shape[0]
        self.num_maskmem = num_maskmem  # Number of memories accessible
        # Temporal encoding of the memories
        self.maskmem_tpos_enc = torch.nn.Parameter(
            torch.zeros(num_maskmem, 1, 1, self.mem_dim)
        )
        trunc_normal_(self.maskmem_tpos_enc, std=0.02)
        # a single token to indicate no memory embedding from previous frames
        self.no_mem_embed = torch.nn.Parameter(torch.zeros(1, 1, self.hidden_dim))
        self.no_mem_pos_enc = torch.nn.Parameter(torch.zeros(1, 1, self.hidden_dim))
        trunc_normal_(self.no_mem_embed, std=0.02)
        trunc_normal_(self.no_mem_pos_enc, std=0.02)
        self.directly_add_no_mem_embed = directly_add_no_mem_embed
        # Apply sigmoid to the output raw mask logits (to turn them from
        # range (-inf, +inf) to range (0, 1)) before feeding them into the memory encoder
        self.sigmoid_scale_for_mem_enc = sigmoid_scale_for_mem_enc
        self.sigmoid_bias_for_mem_enc = sigmoid_bias_for_mem_enc
        self.binarize_mask_from_pts_for_mem_enc = binarize_mask_from_pts_for_mem_enc
        self.non_overlap_masks_for_mem_enc = non_overlap_masks_for_mem_enc
        self.memory_temporal_stride_for_eval = memory_temporal_stride_for_eval
        # On frames with mask input, whether to directly output the input mask without
        # using a SAM prompt encoder + mask decoder
        self.use_mask_input_as_output_without_sam = use_mask_input_as_output_without_sam
        self.multimask_output_in_sam = multimask_output_in_sam
        self.multimask_min_pt_num = multimask_min_pt_num
        self.multimask_max_pt_num = multimask_max_pt_num
        self.multimask_output_for_tracking = multimask_output_for_tracking
        self.use_multimask_token_for_obj_ptr = use_multimask_token_for_obj_ptr
        self.iou_prediction_use_sigmoid = iou_prediction_use_sigmoid

        # Part 4: SAM-style prompt encoder (for both mask and point inputs)
        # and SAM-style mask decoder for the final mask output
        self.image_size = image_size
        self.backbone_stride = backbone_stride
        self.sam_mask_decoder_extra_args = sam_mask_decoder_extra_args
        self.pred_obj_scores = pred_obj_scores
        self.pred_obj_scores_mlp = pred_obj_scores_mlp
        self.fixed_no_obj_ptr = fixed_no_obj_ptr
        self.soft_no_obj_ptr = soft_no_obj_ptr
        if self.fixed_no_obj_ptr:
            assert self.pred_obj_scores
            assert self.use_obj_ptrs_in_encoder
        if self.pred_obj_scores and self.use_obj_ptrs_in_encoder:
            self.no_obj_ptr = torch.nn.Parameter(torch.zeros(1, self.hidden_dim))
            trunc_normal_(self.no_obj_ptr, std=0.02)
        self.use_mlp_for_obj_ptr_proj = use_mlp_for_obj_ptr_proj

        self._build_sam_heads()
        self.add_all_frames_to_correct_as_cond = add_all_frames_to_correct_as_cond
        self.max_cond_frames_in_attn = max_cond_frames_in_attn

        # Model compilation
        if compile_image_encoder:
            # Compile the forward function (not the full module) to allow loading checkpoints.
            print(
                "Image encoder compilation is enabled. First forward pass will be slow."
            )
            self.image_encoder.forward = torch.compile(
                self.image_encoder.forward,
                mode="max-autotune",
                fullgraph=True,
                dynamic=False,
            )

    @property
    def device(self):
        return next(self.parameters()).device

    def forward(self, *args, **kwargs):
        raise NotImplementedError(
            "Please use the corresponding methods in SAM2VideoPredictor for inference."
            "See notebooks/video_predictor_example.ipynb for an example."
        )

    def _build_sam_heads(self):
        """Build SAM-style prompt encoder and mask decoder."""
        self.sam_prompt_embed_dim = self.hidden_dim
        self.sam_image_embedding_size = self.image_size // self.backbone_stride

        # build PromptEncoder and MaskDecoder from SAM
        # (their hyperparameters like `mask_in_chans=16` are from SAM code)
        self.sam_prompt_encoder = PromptEncoder(
            embed_dim=self.sam_prompt_embed_dim,
            image_embedding_size=(
                self.sam_image_embedding_size,
                self.sam_image_embedding_size,
            ),
            input_image_size=(self.image_size, self.image_size),
            mask_in_chans=16,
        )
        self.sam_mask_decoder = MaskDecoder(
            num_multimask_outputs=3,
            transformer=TwoWayTransformer(
                depth=2,
                embedding_dim=self.sam_prompt_embed_dim,
                mlp_dim=2048,
                num_heads=8,
            ),
            transformer_dim=self.sam_prompt_embed_dim,
            iou_head_depth=3,
            iou_head_hidden_dim=256,
            use_high_res_features=self.use_high_res_features_in_sam,
            iou_prediction_use_sigmoid=self.iou_prediction_use_sigmoid,
            pred_obj_scores=self.pred_obj_scores,
            pred_obj_scores_mlp=self.pred_obj_scores_mlp,
            use_multimask_token_for_obj_ptr=self.use_multimask_token_for_obj_ptr,
            **(self.sam_mask_decoder_extra_args or {}),
        )
        if self.use_obj_ptrs_in_encoder:
            # a linear projection on SAM output tokens to turn them into object pointers
            self.obj_ptr_proj = torch.nn.Linear(self.hidden_dim, self.hidden_dim)
            if self.use_mlp_for_obj_ptr_proj:
                self.obj_ptr_proj = MLP(
                    self.hidden_dim, self.hidden_dim, self.hidden_dim, 3
                )
        else:
            self.obj_ptr_proj = torch.nn.Identity()
        if self.proj_tpos_enc_in_obj_ptrs:
            # a linear projection on temporal positional encoding in object pointers to
            # avoid potential interference with spatial positional encoding
            self.obj_ptr_tpos_proj = torch.nn.Linear(self.hidden_dim, self.mem_dim)
        else:
            self.obj_ptr_tpos_proj = torch.nn.Identity()

    def _forward_sam_heads(
        self,
        backbone_features,
        point_inputs=None,
        mask_inputs=None,
        high_res_features=None,
        multimask_output=False,
    ):
        """
        Forward SAM prompt encoders and mask heads.

        Inputs:
        - backbone_features: image features of [B, C, H, W] shape
        - point_inputs: a dictionary with "point_coords" and "point_labels", where
          1) "point_coords" has [B, P, 2] shape and float32 dtype and contains the
             absolute pixel-unit coordinate in (x, y) format of the P input points
          2) "point_labels" has shape [B, P] and int32 dtype, where 1 means
             positive clicks, 0 means negative clicks, and -1 means padding
        - mask_inputs: a mask of [B, 1, H*16, W*16] shape, float or bool, with the
          same spatial size as the image.
        - high_res_features: either 1) None or 2) or a list of length 2 containing
          two feature maps of [B, C, 4*H, 4*W] and [B, C, 2*H, 2*W] shapes respectively,
          which will be used as high-resolution feature maps for SAM decoder.
        - multimask_output: if it's True, we output 3 candidate masks and their 3
          corresponding IoU estimates, and if it's False, we output only 1 mask and
          its corresponding IoU estimate.

        Outputs:
        - low_res_multimasks: [B, M, H*4, W*4] shape (where M = 3 if
          `multimask_output=True` and M = 1 if `multimask_output=False`), the SAM
          output mask logits (before sigmoid) for the low-resolution masks, with 4x
          the resolution (1/4 stride) of the input backbone_features.
        - high_res_multimasks: [B, M, H*16, W*16] shape (where M = 3
          if `multimask_output=True` and M = 1 if `multimask_output=False`),
          upsampled from the low-resolution masks, with shape size as the image
          (stride is 1 pixel).
        - ious, [B, M] shape, where (where M = 3 if `multimask_output=True` and M = 1
          if `multimask_output=False`), the estimated IoU of each output mask.
        - low_res_masks: [B, 1, H*4, W*4] shape, the best mask in `low_res_multimasks`.
          If `multimask_output=True`, it's the mask with the highest IoU estimate.
          If `multimask_output=False`, it's the same as `low_res_multimasks`.
        - high_res_masks: [B, 1, H*16, W*16] shape, the best mask in `high_res_multimasks`.
          If `multimask_output=True`, it's the mask with the highest IoU estimate.
          If `multimask_output=False`, it's the same as `high_res_multimasks`.
        - obj_ptr: [B, C] shape, the object pointer vector for the output mask, extracted
          based on the output token from the SAM mask decoder.
        """
        B = backbone_features.size(0)
        device = backbone_features.device
        assert backbone_features.size(1) == self.sam_prompt_embed_dim
        assert backbone_features.size(2) == self.sam_image_embedding_size
        assert backbone_features.size(3) == self.sam_image_embedding_size

        # a) Handle point prompts
        if point_inputs is not None:
            sam_point_coords = point_inputs["point_coords"]
            sam_point_labels = point_inputs["point_labels"]
            assert sam_point_coords.size(0) == B and sam_point_labels.size(0) == B
        else:
            # If no points are provide, pad with an empty point (with label -1)
            sam_point_coords = torch.zeros(B, 1, 2, device=device)
            sam_point_labels = -torch.ones(B, 1, dtype=torch.int32, device=device)

        # b) Handle mask prompts
        if mask_inputs is not None:
            # If mask_inputs is provided, downsize it into low-res mask input if needed
            # and feed it as a dense mask prompt into the SAM mask encoder
            assert len(mask_inputs.shape) == 4 and mask_inputs.shape[:2] == (B, 1)
            if mask_inputs.shape[-2:] != self.sam_prompt_encoder.mask_input_size:
                sam_mask_prompt = F.interpolate(
                    mask_inputs.float(),
                    size=self.sam_prompt_encoder.mask_input_size,
                    align_corners=False,
                    mode="bilinear",
                    antialias=True,  # use antialias for downsampling
                )
            else:
                sam_mask_prompt = mask_inputs
        else:
            # Otherwise, simply feed None (and SAM's prompt encoder will add
            # a learned `no_mask_embed` to indicate no mask input in this case).
            sam_mask_prompt = None

        sparse_embeddings, dense_embeddings = self.sam_prompt_encoder(
            points=(sam_point_coords, sam_point_labels),
            boxes=None,
            masks=sam_mask_prompt,
        )
        (
            low_res_multimasks,
            ious,
            sam_output_tokens,
            object_score_logits,
        ) = self.sam_mask_decoder(
            image_embeddings=backbone_features,
            image_pe=self.sam_prompt_encoder.get_dense_pe(),
            sparse_prompt_embeddings=sparse_embeddings,
            dense_prompt_embeddings=dense_embeddings,
            multimask_output=multimask_output,
            repeat_image=False,  # the image is already batched
            high_res_features=high_res_features,
        )
        if self.pred_obj_scores:
            is_obj_appearing = object_score_logits > 0

            # Mask used for spatial memories is always a *hard* choice between obj and no obj,
            # consistent with the actual mask prediction
            low_res_multimasks = torch.where(
                is_obj_appearing[:, None, None],
                low_res_multimasks,
                NO_OBJ_SCORE,
            )

        # convert masks from possibly bfloat16 (or float16) to float32
        # (older PyTorch versions before 2.1 don't support `interpolate` on bf16)
        _dtype = low_res_multimasks.dtype
        # low_res_multimasks = low_res_multimasks.float()
        high_res_multimasks = F.interpolate(
            low_res_multimasks.float(),
            size=(self.image_size, self.image_size),
            mode="bilinear",
            align_corners=False,
        ).to(_dtype)

        sam_output_token = sam_output_tokens[:, 0]
        if multimask_output:
            # take the best mask prediction (with the highest IoU estimation)
            best_iou_inds = torch.argmax(ious, dim=-1)
            batch_inds = torch.arange(B, device=device)
            low_res_masks = low_res_multimasks[batch_inds, best_iou_inds].unsqueeze(1)
            high_res_masks = high_res_multimasks[batch_inds, best_iou_inds].unsqueeze(1)
            if sam_output_tokens.size(1) > 1:
                sam_output_token = sam_output_tokens[batch_inds, best_iou_inds]
        else:
            low_res_masks, high_res_masks = low_res_multimasks, high_res_multimasks

        # Extract object pointer from the SAM output token (with occlusion handling)
        obj_ptr = self.obj_ptr_proj(sam_output_token)
        if self.pred_obj_scores:
            # Allow *soft* no obj ptr, unlike for masks
            if self.soft_no_obj_ptr:
                # Only hard possible with gt
                assert not self.teacher_force_obj_scores_for_mem
                lambda_is_obj_appearing = object_score_logits.sigmoid()
            else:
                lambda_is_obj_appearing = is_obj_appearing.float()

            if self.fixed_no_obj_ptr:
                obj_ptr = lambda_is_obj_appearing * obj_ptr
            obj_ptr = obj_ptr + (1 - lambda_is_obj_appearing) * self.no_obj_ptr

        return (
            low_res_multimasks,
            high_res_multimasks,
            ious,
            low_res_masks,
            high_res_masks,
            obj_ptr,
            object_score_logits,
        )

    def _use_mask_as_output(self, backbone_features, high_res_features, mask_inputs):
        """
        Directly turn binary `mask_inputs` into a output mask logits without using SAM.
        (same input and output shapes as in _forward_sam_heads above).
        """
        # Use -10/+10 as logits for neg/pos pixels (very close to 0/1 in prob after sigmoid).
        out_scale, out_bias = 20.0, -10.0  # sigmoid(-10.0)=4.5398e-05
        mask_inputs_float = mask_inputs.float()
        high_res_masks = mask_inputs_float * out_scale + out_bias
        low_res_masks = F.interpolate(
            high_res_masks,
            size=(high_res_masks.size(-2) // 4, high_res_masks.size(-1) // 4),
            align_corners=False,
            mode="bilinear",
            antialias=True,  # use antialias for downsampling
        )
        # a dummy IoU prediction of all 1's under mask input
        ious = mask_inputs.new_ones(mask_inputs.size(0), 1).float()
        if not self.use_obj_ptrs_in_encoder:
            # all zeros as a dummy object pointer (of shape [B, C])
            obj_ptr = torch.zeros(
                mask_inputs.size(0), self.hidden_dim, device=mask_inputs.device
            )
        else:
            # produce an object pointer using the SAM decoder from the mask input
            _, _, _, _, _, obj_ptr, _ = self._forward_sam_heads(
                backbone_features=backbone_features,
                mask_inputs=self.mask_downsample(mask_inputs_float),
                high_res_features=high_res_features,
            )
        # In this method, we are treating mask_input as output, e.g. using it directly to create spatial mem;
        # Below, we follow the same design axiom to use mask_input to decide if obj appears or not instead of relying
        # on the object_scores from the SAM decoder.
        is_obj_appearing = torch.any(mask_inputs.flatten(1).float() > 0.0, dim=1)
        is_obj_appearing = is_obj_appearing[..., None]
        lambda_is_obj_appearing = is_obj_appearing.float()
        object_score_logits = out_scale * lambda_is_obj_appearing + out_bias
        if self.pred_obj_scores:
            if self.fixed_no_obj_ptr:
                obj_ptr = lambda_is_obj_appearing * obj_ptr
            obj_ptr = obj_ptr + (1 - lambda_is_obj_appearing) * self.no_obj_ptr

        return (
            low_res_masks,
            high_res_masks,
            ious,
            low_res_masks,
            high_res_masks,
            obj_ptr,
            object_score_logits,
        )

    def forward_image(self, img_batch: torch.Tensor):
        """Get the image feature on the input batch."""
        backbone_out = self.image_encoder(img_batch)
        if self.use_high_res_features_in_sam:
            # precompute projected level 0 and level 1 features in SAM decoder
            # to avoid running it again on every SAM click
            backbone_out["backbone_fpn"][0] = self.sam_mask_decoder.conv_s0(
                backbone_out["backbone_fpn"][0]
            )
            backbone_out["backbone_fpn"][1] = self.sam_mask_decoder.conv_s1(
                backbone_out["backbone_fpn"][1]
            )
        return backbone_out

    def _prepare_backbone_features(self, backbone_out):
        """Prepare and flatten visual features."""
        backbone_out = backbone_out.copy()
        assert len(backbone_out["backbone_fpn"]) == len(backbone_out["vision_pos_enc"])
        assert len(backbone_out["backbone_fpn"]) >= self.num_feature_levels

        feature_maps = backbone_out["backbone_fpn"][-self.num_feature_levels :]
        vision_pos_embeds = backbone_out["vision_pos_enc"][-self.num_feature_levels :]

        feat_sizes = [(x.shape[-2], x.shape[-1]) for x in vision_pos_embeds]
        # flatten NxCxHxW to HWxNxC
        vision_feats = [x.flatten(2).permute(2, 0, 1) for x in feature_maps]
        vision_pos_embeds = [x.flatten(2).permute(2, 0, 1) for x in vision_pos_embeds]

        return backbone_out, vision_feats, vision_pos_embeds, feat_sizes

    def _prepare_memory_conditioned_features(
        self,
        frame_idx,
        is_init_cond_frame,
        current_vision_feats,
        current_vision_pos_embeds,
        feat_sizes,
        output_dict,
        num_frames,
        track_in_reverse=False,  # tracking in reverse time order (for demo usage)
    ):
        """Fuse the current frame's visual feature map with previous memory."""
        B = current_vision_feats[-1].size(1)  # batch size on this frame
        C = self.hidden_dim
        H, W = feat_sizes[-1]  # top-level (lowest-resolution) feature size
        device = current_vision_feats[-1].device
        # The case of `self.num_maskmem == 0` below is primarily used for reproducing SAM on images.
        # In this case, we skip the fusion with any memory.
        if self.num_maskmem == 0:  # Disable memory and skip fusion
            pix_feat = current_vision_feats[-1].permute(1, 2, 0).view(B, C, H, W)
            return pix_feat

        num_obj_ptr_tokens = 0
        # Step 1: condition the visual features of the current frame on previous memories
        if not is_init_cond_frame:
            # Retrieve the memories encoded with the maskmem backbone
            to_cat_memory, to_cat_memory_pos_embed = [], []
            # Add conditioning frames's output first (all cond frames have t_pos=0 for
            # when getting temporal positional embedding below)
            assert len(output_dict["cond_frame_outputs"]) > 0
            # Select a maximum number of temporally closest cond frames for cross attention
            cond_outputs = output_dict["cond_frame_outputs"]
            selected_cond_outputs, unselected_cond_outputs = select_closest_cond_frames(
                frame_idx, cond_outputs, self.max_cond_frames_in_attn
            )
            t_pos_and_prevs = [(0, out) for out in selected_cond_outputs.values()]
            # Add last (self.num_maskmem - 1) frames before current frame for non-conditioning memory
            # the earliest one has t_pos=1 and the latest one has t_pos=self.num_maskmem-1
            # We also allow taking the memory frame non-consecutively (with r>1), in which case
            # we take (self.num_maskmem - 2) frames among every r-th frames plus the last frame.
            r = self.memory_temporal_stride_for_eval
            for t_pos in range(1, self.num_maskmem):
                t_rel = self.num_maskmem - t_pos  # how many frames before current frame
                if t_rel == 1:
                    # for t_rel == 1, we take the last frame (regardless of r)
                    if not track_in_reverse:
                        # the frame immediately before this frame (i.e. frame_idx - 1)
                        prev_frame_idx = frame_idx - t_rel
                    else:
                        # the frame immediately after this frame (i.e. frame_idx + 1)
                        prev_frame_idx = frame_idx + t_rel
                else:
                    # for t_rel >= 2, we take the memory frame from every r-th frames
                    if not track_in_reverse:
                        # first find the nearest frame among every r-th frames before this frame
                        # for r=1, this would be (frame_idx - 2)
                        prev_frame_idx = ((frame_idx - 2) // r) * r
                        # then seek further among every r-th frames
                        prev_frame_idx = prev_frame_idx - (t_rel - 2) * r
                    else:
                        # first find the nearest frame among every r-th frames after this frame
                        # for r=1, this would be (frame_idx + 2)
                        prev_frame_idx = -(-(frame_idx + 2) // r) * r
                        # then seek further among every r-th frames
                        prev_frame_idx = prev_frame_idx + (t_rel - 2) * r
                out = output_dict["non_cond_frame_outputs"].get(prev_frame_idx, None)
                if out is None:
                    # If an unselected conditioning frame is among the last (self.num_maskmem - 1)
                    # frames, we still attend to it as if it's a non-conditioning frame.
                    out = unselected_cond_outputs.get(prev_frame_idx, None)
                t_pos_and_prevs.append((t_pos, out))

            for t_pos, prev in t_pos_and_prevs:
                if prev is None:
                    continue  # skip padding frames
                # "maskmem_features" might have been offloaded to CPU in demo use cases,
                # so we load it back to GPU (it's a no-op if it's already on GPU).
                feats = prev["maskmem_features"].cuda(non_blocking=True)
                to_cat_memory.append(feats.flatten(2).permute(2, 0, 1))
                # Spatial positional encoding (it might have been offloaded to CPU in eval)
                maskmem_enc = prev["maskmem_pos_enc"][-1].cuda()
                maskmem_enc = maskmem_enc.flatten(2).permute(2, 0, 1)
                # Temporal positional encoding
                maskmem_enc = (
                    maskmem_enc + self.maskmem_tpos_enc[self.num_maskmem - t_pos - 1]
                )
                to_cat_memory_pos_embed.append(maskmem_enc)

            # Construct the list of past object pointers
            if self.use_obj_ptrs_in_encoder:
                max_obj_ptrs_in_encoder = min(num_frames, self.max_obj_ptrs_in_encoder)
                # First add those object pointers from selected conditioning frames
                # (optionally, only include object pointers in the past during evaluation)
                if not self.training and self.only_obj_ptrs_in_the_past_for_eval:
                    ptr_cond_outputs = {
                        t: out
                        for t, out in selected_cond_outputs.items()
                        if (t >= frame_idx if track_in_reverse else t <= frame_idx)
                    }
                else:
                    ptr_cond_outputs = selected_cond_outputs
                pos_and_ptrs = [
                    # Temporal pos encoding contains how far away each pointer is from current frame
                    (abs(frame_idx - t), out["obj_ptr"])
                    for t, out in ptr_cond_outputs.items()
                ]
                # Add up to (max_obj_ptrs_in_encoder - 1) non-conditioning frames before current frame
                for t_diff in range(1, max_obj_ptrs_in_encoder):
                    t = frame_idx + t_diff if track_in_reverse else frame_idx - t_diff
                    if t < 0 or (num_frames is not None and t >= num_frames):
                        break
                    out = output_dict["non_cond_frame_outputs"].get(
                        t, unselected_cond_outputs.get(t, None)
                    )
                    if out is not None:
                        pos_and_ptrs.append((t_diff, out["obj_ptr"]))
                # If we have at least one object pointer, add them to the across attention
                if len(pos_and_ptrs) > 0:
                    pos_list, ptrs_list = zip(*pos_and_ptrs)
                    # stack object pointers along dim=0 into [ptr_seq_len, B, C] shape
                    obj_ptrs = torch.stack(ptrs_list, dim=0)
                    # a temporal positional embedding based on how far each object pointer is from
                    # the current frame (sine embedding normalized by the max pointer num).
                    if self.add_tpos_enc_to_obj_ptrs:
                        t_diff_max = max_obj_ptrs_in_encoder - 1
                        tpos_dim = C if self.proj_tpos_enc_in_obj_ptrs else self.mem_dim
                        obj_pos = torch.tensor(pos_list, device=device)
                        obj_pos = get_1d_sine_pe(obj_pos / t_diff_max, dim=tpos_dim)
                        obj_pos = self.obj_ptr_tpos_proj(obj_pos)
                        obj_pos = obj_pos.unsqueeze(1).expand(-1, B, self.mem_dim)
                    else:
                        obj_pos = obj_ptrs.new_zeros(len(pos_list), B, self.mem_dim)
                    if self.mem_dim < C:
                        # split a pointer into (C // self.mem_dim) tokens for self.mem_dim < C
                        obj_ptrs = obj_ptrs.reshape(
                            -1, B, C // self.mem_dim, self.mem_dim
                        )
                        obj_ptrs = obj_ptrs.permute(0, 2, 1, 3).flatten(0, 1)
                        obj_pos = obj_pos.repeat_interleave(C // self.mem_dim, dim=0)
                    to_cat_memory.append(obj_ptrs)
                    to_cat_memory_pos_embed.append(obj_pos)
                    num_obj_ptr_tokens = obj_ptrs.shape[0]
                else:
                    num_obj_ptr_tokens = 0
        else:
            # for initial conditioning frames, encode them without using any previous memory
            if self.directly_add_no_mem_embed:
                # directly add no-mem embedding (instead of using the transformer encoder)
                pix_feat_with_mem = current_vision_feats[-1] + self.no_mem_embed
                pix_feat_with_mem = pix_feat_with_mem.permute(1, 2, 0).view(B, C, H, W)
                return pix_feat_with_mem

            # Use a dummy token on the first frame (to avoid emtpy memory input to tranformer encoder)
            to_cat_memory = [self.no_mem_embed.expand(1, B, self.mem_dim)]
            to_cat_memory_pos_embed = [self.no_mem_pos_enc.expand(1, B, self.mem_dim)]

        # Step 2: Concatenate the memories and forward through the transformer encoder
        memory = torch.cat(to_cat_memory, dim=0)
        memory_pos_embed = torch.cat(to_cat_memory_pos_embed, dim=0)

        pix_feat_with_mem = self.memory_attention(
            curr=current_vision_feats,
            curr_pos=current_vision_pos_embeds,
            memory=memory,
            memory_pos=memory_pos_embed,
            num_obj_ptr_tokens=num_obj_ptr_tokens,
        )
        # reshape the output (HW)BC => BCHW
        pix_feat_with_mem = pix_feat_with_mem.permute(1, 2, 0).view(B, C, H, W)
        return pix_feat_with_mem

    def _encode_new_memory(
        self,
        current_vision_feats,
        feat_sizes,
        pred_masks_high_res,
        is_mask_from_pts,
    ):
        """Encode the current image and its prediction into a memory feature."""
        B = current_vision_feats[-1].size(1)  # batch size on this frame
        C = self.hidden_dim
        H, W = feat_sizes[-1]  # top-level (lowest-resolution) feature size
        # top-level feature, (HW)BC => BCHW
        pix_feat = current_vision_feats[-1].permute(1, 2, 0).view(B, C, H, W)
        if self.non_overlap_masks_for_mem_enc and not self.training:
            # optionally, apply non-overlapping constraints to the masks (it's applied
            # in the batch dimension and should only be used during eval, where all
            # the objects come from the same video under batch size 1).
            pred_masks_high_res = self._apply_non_overlapping_constraints(
                pred_masks_high_res
            )
        # scale the raw mask logits with a temperature before applying sigmoid
        binarize = self.binarize_mask_from_pts_for_mem_enc and is_mask_from_pts
        if binarize and not self.training:
            mask_for_mem = (pred_masks_high_res > 0).float()
        else:
            # apply sigmoid on the raw mask logits to turn them into range (0, 1)
            mask_for_mem = torch.sigmoid(pred_masks_high_res)
        # apply scale and bias terms to the sigmoid probabilities
        if self.sigmoid_scale_for_mem_enc != 1.0:
            mask_for_mem = mask_for_mem * self.sigmoid_scale_for_mem_enc
        if self.sigmoid_bias_for_mem_enc != 0.0:
            mask_for_mem = mask_for_mem + self.sigmoid_bias_for_mem_enc
        maskmem_out = self.memory_encoder(
            pix_feat, mask_for_mem, skip_mask_sigmoid=True  # sigmoid already applied
        )
        maskmem_features = maskmem_out["vision_features"]
        maskmem_pos_enc = maskmem_out["vision_pos_enc"]

        return maskmem_features, maskmem_pos_enc

    def track_step(
        self,
        frame_idx,
        is_init_cond_frame,
        current_vision_feats,
        current_vision_pos_embeds,
        feat_sizes,
        point_inputs,
        mask_inputs,
        output_dict,
        num_frames,
        track_in_reverse=False,  # tracking in reverse time order (for demo usage)
        # Whether to run the memory encoder on the predicted masks. Sometimes we might want
        # to skip the memory encoder with `run_mem_encoder=False`. For example,
        # in demo we might call `track_step` multiple times for each user click,
        # and only encode the memory when the user finalizes their clicks. And in ablation
        # settings like SAM training on static images, we don't need the memory encoder.
        run_mem_encoder=True,
        # The previously predicted SAM mask logits (which can be fed together with new clicks in demo).
        prev_sam_mask_logits=None,
    ):
        current_out = {"point_inputs": point_inputs, "mask_inputs": mask_inputs}
        # High-resolution feature maps for the SAM head, reshape (HW)BC => BCHW
        if len(current_vision_feats) > 1:
            high_res_features = [
                x.permute(1, 2, 0).view(x.size(1), x.size(2), *s)
                for x, s in zip(current_vision_feats[:-1], feat_sizes[:-1])
            ]
        else:
            high_res_features = None
        if mask_inputs is not None and self.use_mask_input_as_output_without_sam:
            # When use_mask_input_as_output_without_sam=True, we directly output the mask input
            # (see it as a GT mask) without using a SAM prompt encoder + mask decoder.
            pix_feat = current_vision_feats[-1].permute(1, 2, 0)
            pix_feat = pix_feat.view(-1, self.hidden_dim, *feat_sizes[-1])
            sam_outputs = self._use_mask_as_output(
                pix_feat, high_res_features, mask_inputs
            )
        else:
            # fused the visual feature with previous memory features in the memory bank
            pix_feat_with_mem = self._prepare_memory_conditioned_features(
                frame_idx=frame_idx,
                is_init_cond_frame=is_init_cond_frame,
                current_vision_feats=current_vision_feats[-1:],
                current_vision_pos_embeds=current_vision_pos_embeds[-1:],
                feat_sizes=feat_sizes[-1:],
                output_dict=output_dict,
                num_frames=num_frames,
                track_in_reverse=track_in_reverse,
            )
            # apply SAM-style segmentation head
            # here we might feed previously predicted low-res SAM mask logits into the SAM mask decoder,
            # e.g. in demo where such logits come from earlier interaction instead of correction sampling
            # (in this case, any `mask_inputs` shouldn't reach here as they are sent to _use_mask_as_output instead)
            if prev_sam_mask_logits is not None:
                assert point_inputs is not None and mask_inputs is None
                mask_inputs = prev_sam_mask_logits
            multimask_output = self._use_multimask(is_init_cond_frame, point_inputs)
            sam_outputs = self._forward_sam_heads(
                backbone_features=pix_feat_with_mem,
                point_inputs=point_inputs,
                mask_inputs=mask_inputs,
                high_res_features=high_res_features,
                multimask_output=multimask_output,
            )
        (
            _,
            _,
            _,
            low_res_masks,
            high_res_masks,
            obj_ptr,
            _,
        ) = sam_outputs

        current_out["pred_masks"] = low_res_masks
        current_out["pred_masks_high_res"] = high_res_masks
        current_out["obj_ptr"] = obj_ptr

        # Finally run the memory encoder on the predicted mask to encode
        # it into a new memory feature (that can be used in future frames)
        if run_mem_encoder and self.num_maskmem > 0:
            high_res_masks_for_mem_enc = high_res_masks
            maskmem_features, maskmem_pos_enc = self._encode_new_memory(
                current_vision_feats=current_vision_feats,
                feat_sizes=feat_sizes,
                pred_masks_high_res=high_res_masks_for_mem_enc,
                is_mask_from_pts=(point_inputs is not None),
            )
            current_out["maskmem_features"] = maskmem_features
            current_out["maskmem_pos_enc"] = maskmem_pos_enc
        else:
            current_out["maskmem_features"] = None
            current_out["maskmem_pos_enc"] = None

        return current_out

    def _use_multimask(self, is_init_cond_frame, point_inputs):
        """Whether to use multimask output in the SAM head."""
        num_pts = 0 if point_inputs is None else point_inputs["point_labels"].size(1)
        multimask_output = (
            self.multimask_output_in_sam
            and (is_init_cond_frame or self.multimask_output_for_tracking)
            and (self.multimask_min_pt_num <= num_pts <= self.multimask_max_pt_num)
        )
        return multimask_output

    def _apply_non_overlapping_constraints(self, pred_masks):
        """
        Apply non-overlapping constraints to the object scores in pred_masks. Here we
        keep only the highest scoring object at each spatial location in pred_masks.
        """
        batch_size = pred_masks.size(0)
        if batch_size == 1:
            return pred_masks

        device = pred_masks.device
        # "max_obj_inds": object index of the object with the highest score at each location
        max_obj_inds = torch.argmax(pred_masks, dim=0, keepdim=True)
        # "batch_obj_inds": object index of each object slice (along dim 0) in `pred_masks`
        batch_obj_inds = torch.arange(batch_size, device=device)[:, None, None, None]
        keep = max_obj_inds == batch_obj_inds
        # suppress overlapping regions' scores below -10.0 so that the foreground regions
        # don't overlap (here sigmoid(-10.0)=4.5398e-05)
        pred_masks = torch.where(keep, pred_masks, torch.clamp(pred_masks, max=-10.0))
        return pred_masks

class SAM2Base(SAM2Base_):

    def track_step(
        self,
        frame_idx,
        is_init_cond_frame,
        current_vision_feats,
        current_vision_pos_embeds,
        feat_sizes,
        point_inputs,
        mask_inputs,
        output_dict,
        num_frames,
        track_in_reverse=False,  # tracking in reverse time order (for demo usage)
        # Whether to run the memory encoder on the predicted masks. Sometimes we might want
        # to skip the memory encoder with `run_mem_encoder=False`. For example,
        # in demo we might call `track_step` multiple times for each user click,
        # and only encode the memory when the user finalizes their clicks. And in ablation
        # settings like SAM training on static images, we don't need the memory encoder.
        run_mem_encoder=True,
        # The previously predicted SAM mask logits (which can be fed together with new clicks in demo).
        prev_sam_mask_logits=None,
        ## Extension: LLM prompt
        language_embd=None,
    ):
        current_out = {"point_inputs": point_inputs, "mask_inputs": mask_inputs}
        # High-resolution feature maps for the SAM head, reshape (HW)BC => BCHW
        if len(current_vision_feats) > 1:
            high_res_features = [
                x.permute(1, 2, 0).view(x.size(1), x.size(2), *s)
                for x, s in zip(current_vision_feats[:-1], feat_sizes[:-1])
            ]
        else:
            high_res_features = None
        if mask_inputs is not None and self.use_mask_input_as_output_without_sam:
            # When use_mask_input_as_output_without_sam=True, we directly output the mask input
            # (see it as a GT mask) without using a SAM prompt encoder + mask decoder.
            pix_feat = current_vision_feats[-1].permute(1, 2, 0)
            pix_feat = pix_feat.view(-1, self.hidden_dim, *feat_sizes[-1])
            sam_outputs = self._use_mask_as_output(
                pix_feat, high_res_features, mask_inputs
            )
        else:
            # fused the visual feature with previous memory features in the memory bank
            pix_feat_with_mem = self._prepare_memory_conditioned_features(
                frame_idx=frame_idx,
                is_init_cond_frame=is_init_cond_frame,
                current_vision_feats=current_vision_feats[-1:],
                current_vision_pos_embeds=current_vision_pos_embeds[-1:],
                feat_sizes=feat_sizes[-1:],
                output_dict=output_dict,
                num_frames=num_frames,
                track_in_reverse=track_in_reverse,
            )
            # apply SAM-style segmentation head
            # here we might feed previously predicted low-res SAM mask logits into the SAM mask decoder,
            # e.g. in demo where such logits come from earlier interaction instead of correction sampling
            # (in this case, any `mask_inputs` shouldn't reach here as they are sent to _use_mask_as_output instead)
            if prev_sam_mask_logits is not None:
                assert point_inputs is not None and mask_inputs is None
                mask_inputs = prev_sam_mask_logits
            multimask_output = self._use_multimask(is_init_cond_frame, point_inputs)
            sam_outputs = self._forward_sam_heads(
                backbone_features=pix_feat_with_mem,
                point_inputs=point_inputs,
                mask_inputs=mask_inputs,
                high_res_features=high_res_features,
                multimask_output=multimask_output,
                # Inject language Embed if possible
                language_embd=language_embd,
            )
        (
            _,
            _,
            _,
            low_res_masks,
            high_res_masks,
            obj_ptr,
            _,
        ) = sam_outputs

        current_out["pred_masks"] = low_res_masks
        current_out["pred_masks_high_res"] = high_res_masks
        current_out["obj_ptr"] = obj_ptr

        # Finally run the memory encoder on the predicted mask to encode
        # it into a new memory feature (that can be used in future frames)
        if run_mem_encoder and self.num_maskmem > 0:
            high_res_masks_for_mem_enc = high_res_masks
            maskmem_features, maskmem_pos_enc = self._encode_new_memory(
                current_vision_feats=current_vision_feats,
                feat_sizes=feat_sizes,
                pred_masks_high_res=high_res_masks_for_mem_enc,
                is_mask_from_pts=(point_inputs is not None),
            )
            current_out["maskmem_features"] = maskmem_features
            current_out["maskmem_pos_enc"] = maskmem_pos_enc
        else:
            current_out["maskmem_features"] = None
            current_out["maskmem_pos_enc"] = None

        return current_out


    def _forward_sam_heads(
        self,
        backbone_features,
        point_inputs=None,
        mask_inputs=None,
        high_res_features=None,
        multimask_output=False,
        ## Extension: LLM prompt
        language_embd=None,
    ):
        """
        Forward SAM prompt encoders and mask heads.

        Inputs:
        - backbone_features: image features of [B, C, H, W] shape
        - point_inputs: a dictionary with "point_coords" and "point_labels", where
          1) "point_coords" has [B, P, 2] shape and float32 dtype and contains the
             absolute pixel-unit coordinate in (x, y) format of the P input points
          2) "point_labels" has shape [B, P] and int32 dtype, where 1 means
             positive clicks, 0 means negative clicks, and -1 means padding
        - mask_inputs: a mask of [B, 1, H*16, W*16] shape, float or bool, with the
          same spatial size as the image.
        - high_res_features: either 1) None or 2) or a list of length 2 containing
          two feature maps of [B, C, 4*H, 4*W] and [B, C, 2*H, 2*W] shapes respectively,
          which will be used as high-resolution feature maps for SAM decoder.
        - multimask_output: if it's True, we output 3 candidate masks and their 3
          corresponding IoU estimates, and if it's False, we output only 1 mask and
          its corresponding IoU estimate.

        Outputs:
        - low_res_multimasks: [B, M, H*4, W*4] shape (where M = 3 if
          `multimask_output=True` and M = 1 if `multimask_output=False`), the SAM
          output mask logits (before sigmoid) for the low-resolution masks, with 4x
          the resolution (1/4 stride) of the input backbone_features.
        - high_res_multimasks: [B, M, H*16, W*16] shape (where M = 3
          if `multimask_output=True` and M = 1 if `multimask_output=False`),
          upsampled from the low-resolution masks, with shape size as the image
          (stride is 1 pixel).
        - ious, [B, M] shape, where (where M = 3 if `multimask_output=True` and M = 1
          if `multimask_output=False`), the estimated IoU of each output mask.
        - low_res_masks: [B, 1, H*4, W*4] shape, the best mask in `low_res_multimasks`.
          If `multimask_output=True`, it's the mask with the highest IoU estimate.
          If `multimask_output=False`, it's the same as `low_res_multimasks`.
        - high_res_masks: [B, 1, H*16, W*16] shape, the best mask in `high_res_multimasks`.
          If `multimask_output=True`, it's the mask with the highest IoU estimate.
          If `multimask_output=False`, it's the same as `high_res_multimasks`.
        - obj_ptr: [B, C] shape, the object pointer vector for the output mask, extracted
          based on the output token from the SAM mask decoder.
        """
        B = backbone_features.size(0)
        device = backbone_features.device
        assert backbone_features.size(1) == self.sam_prompt_embed_dim
        assert backbone_features.size(2) == self.sam_image_embedding_size
        assert backbone_features.size(3) == self.sam_image_embedding_size

        # a) Handle point prompts
        if point_inputs is not None:
            sam_point_coords = point_inputs["point_coords"]
            sam_point_labels = point_inputs["point_labels"]
            assert sam_point_coords.size(0) == B and sam_point_labels.size(0) == B
        else:
            # If no points are provide, pad with an empty point (with label -1)
            sam_point_coords = torch.zeros(B, 1, 2, device=device)
            sam_point_labels = -torch.ones(B, 1, dtype=torch.int32, device=device)

        # b) Handle mask prompts
        if mask_inputs is not None:
            # If mask_inputs is provided, downsize it into low-res mask input if needed
            # and feed it as a dense mask prompt into the SAM mask encoder
            assert len(mask_inputs.shape) == 4 and mask_inputs.shape[:2] == (B, 1)
            if mask_inputs.shape[-2:] != self.sam_prompt_encoder.mask_input_size:
                sam_mask_prompt = F.interpolate(
                    mask_inputs.float(),
                    size=self.sam_prompt_encoder.mask_input_size,
                    align_corners=False,
                    mode="bilinear",
                    antialias=True,  # use antialias for downsampling
                )
            else:
                sam_mask_prompt = mask_inputs
        else:
            # Otherwise, simply feed None (and SAM's prompt encoder will add
            # a learned `no_mask_embed` to indicate no mask input in this case).
            sam_mask_prompt = None

        sparse_embeddings, dense_embeddings = self.sam_prompt_encoder(
            points=(sam_point_coords, sam_point_labels),
            boxes=None,
            masks=sam_mask_prompt,
        )

        ## Extension: LLM prompt
        if language_embd is not None:
            # B N C
            assert sparse_embeddings.size(0) == language_embd.size(0)
            assert sparse_embeddings.size(2) == language_embd.size(2)
            sparse_embeddings = torch.cat([sparse_embeddings, language_embd], dim=1)

        (
            low_res_multimasks,
            ious,
            sam_output_tokens,
            object_score_logits,
        ) = self.sam_mask_decoder(
            image_embeddings=backbone_features,
            image_pe=self.sam_prompt_encoder.get_dense_pe(),
            sparse_prompt_embeddings=sparse_embeddings,
            dense_prompt_embeddings=dense_embeddings,
            multimask_output=multimask_output,
            repeat_image=False,  # the image is already batched
            high_res_features=high_res_features,
        )
        if self.pred_obj_scores:
            is_obj_appearing = object_score_logits > 0

            # Mask used for spatial memories is always a *hard* choice between obj and no obj,
            # consistent with the actual mask prediction
            # print('Do torch.where !!!')
            # low_res_multimasks = torch.where(
            #     is_obj_appearing[:, None, None],
            #     low_res_multimasks,
            #     NO_OBJ_SCORE,
            # )

        # convert masks from possibly bfloat16 (or float16) to float32
        # (older PyTorch versions before 2.1 don't support `interpolate` on bf16)
        low_res_multimasks = low_res_multimasks.float()
        high_res_multimasks = F.interpolate(
            low_res_multimasks,
            size=(self.image_size, self.image_size),
            mode="bilinear",
            align_corners=False,
        )

        sam_output_token = sam_output_tokens[:, 0]
        if multimask_output:
            # take the best mask prediction (with the highest IoU estimation)
            best_iou_inds = torch.argmax(ious, dim=-1)
            batch_inds = torch.arange(B, device=device)
            low_res_masks = low_res_multimasks[batch_inds, best_iou_inds].unsqueeze(1)
            high_res_masks = high_res_multimasks[batch_inds, best_iou_inds].unsqueeze(1)
            if sam_output_tokens.size(1) > 1:
                sam_output_token = sam_output_tokens[batch_inds, best_iou_inds]
        else:
            low_res_masks, high_res_masks = low_res_multimasks, high_res_multimasks

        # Extract object pointer from the SAM output token (with occlusion handling)
        obj_ptr = self.obj_ptr_proj(sam_output_token)
        if self.pred_obj_scores:
            # Allow *soft* no obj ptr, unlike for masks
            if self.soft_no_obj_ptr:
                # Only hard possible with gt
                assert not self.teacher_force_obj_scores_for_mem
                lambda_is_obj_appearing = object_score_logits.sigmoid()
            else:
                lambda_is_obj_appearing = is_obj_appearing.float()

            if self.fixed_no_obj_ptr:
                obj_ptr = lambda_is_obj_appearing * obj_ptr
            obj_ptr = obj_ptr + (1 - lambda_is_obj_appearing) * self.no_obj_ptr

        return (
            low_res_multimasks,
            high_res_multimasks,
            ious,
            low_res_masks,
            high_res_masks,
            obj_ptr,
            object_score_logits,
        )


def _obj_id_to_idx(inference_state, obj_id):
    """Map client-side object id to model-side object index."""
    obj_idx = inference_state["obj_id_to_idx"].get(obj_id, None)
    if obj_idx is not None:
        return obj_idx

    # This is a new object id not sent to the server before. We only allow adding
    # new objects *before* the tracking starts.
    allow_new_object = not inference_state["tracking_has_started"]
    if allow_new_object:
        # get the next object slot
        obj_idx = len(inference_state["obj_id_to_idx"])
        inference_state["obj_id_to_idx"][obj_id] = obj_idx
        inference_state["obj_idx_to_id"][obj_idx] = obj_id
        inference_state["obj_ids"] = list(inference_state["obj_id_to_idx"])
        # set up input and output structures for this object
        inference_state["point_inputs_per_obj"][obj_idx] = {}
        inference_state["mask_inputs_per_obj"][obj_idx] = {}
        inference_state["output_dict_per_obj"][obj_idx] = {
            "cond_frame_outputs": {},  # dict containing {frame_idx: <out>}
            "non_cond_frame_outputs": {},  # dict containing {frame_idx: <out>}
        }
        inference_state["temp_output_dict_per_obj"][obj_idx] = {
            "cond_frame_outputs": {},  # dict containing {frame_idx: <out>}
            "non_cond_frame_outputs": {},  # dict containing {frame_idx: <out>}
        }
        return obj_idx
    else:
        raise RuntimeError(
            f"Cannot add new object id {obj_id} after tracking starts. "
            f"All existing object ids: {inference_state['obj_ids']}. "
            f"Please call 'reset_state' to restart from scratch."
        )


def _get_maskmem_pos_enc(inference_state, current_out):
    """
    `maskmem_pos_enc` is the same across frames and objects, so we cache it as
    a constant in the inference session to reduce session storage size.
    """
    model_constants = inference_state["constants"]
    # "out_maskmem_pos_enc" should be either a list of tensors or None
    out_maskmem_pos_enc = current_out["maskmem_pos_enc"]
    if out_maskmem_pos_enc is not None:
        if "maskmem_pos_enc" not in model_constants:
            assert isinstance(out_maskmem_pos_enc, list)
            # only take the slice for one object, since it's same across objects
            maskmem_pos_enc = [x[0:1].clone() for x in out_maskmem_pos_enc]
            model_constants["maskmem_pos_enc"] = maskmem_pos_enc
        else:
            maskmem_pos_enc = model_constants["maskmem_pos_enc"]
        # expand the cached maskmem_pos_enc to the actual batch size
        batch_size = out_maskmem_pos_enc[0].size(0)
        expanded_maskmem_pos_enc = [
            x.expand(batch_size, -1, -1, -1) for x in maskmem_pos_enc
        ]
    else:
        expanded_maskmem_pos_enc = None
    return expanded_maskmem_pos_enc


def _obj_idx_to_id(inference_state, obj_idx):
    """Map model-side object index to client-side object id."""
    return inference_state["obj_idx_to_id"][obj_idx]


def _get_obj_num(inference_state):
    """Get the total number of unique object ids received so far in this session."""
    return len(inference_state["obj_idx_to_id"])


class SAM2VideoPredictor(SAM2Base):
    """The predictor class to handle user interactions and manage inference states."""

    def __init__(
        self,
        fill_hole_area=0,
        # whether to apply non-overlapping constraints on the output object masks
        non_overlap_masks=False,
        # whether to clear non-conditioning memory of the surrounding frames (which may contain outdated information) after adding correction clicks;
        # note that this would only apply to *single-object tracking* unless `clear_non_cond_mem_for_multi_obj` is also set to True)
        clear_non_cond_mem_around_input=False,
        # whether to also clear non-conditioning memory of the surrounding frames (only effective when `clear_non_cond_mem_around_input` is True).
        clear_non_cond_mem_for_multi_obj=False,
        **kwargs,
    ):
        super().__init__(**kwargs)
        self.fill_hole_area = fill_hole_area
        self.non_overlap_masks = non_overlap_masks
        self.clear_non_cond_mem_around_input = clear_non_cond_mem_around_input
        self.clear_non_cond_mem_for_multi_obj = clear_non_cond_mem_for_multi_obj

    def _get_image_feature(self, inference_state, frame_idx, batch_size):
        """Compute the image features on a given frame."""
        # Look up in the cache first
        image, backbone_out = inference_state["cached_features"].get(
            frame_idx, (None, None)
        )
        if backbone_out is None:
            # Cache miss -- we will run inference on a single image
            # image = inference_state["images"][frame_idx].cuda().float().unsqueeze(0)
            image = inference_state["images"][frame_idx].cuda().unsqueeze(0)
            backbone_out = self.forward_image(image)
            # Cache the most recent frame's feature (for repeated interactions with
            # a frame; we can use an LRU cache for more frames in the future).
            inference_state["cached_features"] = {frame_idx: (image, backbone_out)}

        # expand the features to have the same dimension as the number of objects
        expanded_image = image.expand(batch_size, -1, -1, -1)
        expanded_backbone_out = {
            "backbone_fpn": backbone_out["backbone_fpn"].copy(),
            "vision_pos_enc": backbone_out["vision_pos_enc"].copy(),
        }
        for i, feat in enumerate(expanded_backbone_out["backbone_fpn"]):
            expanded_backbone_out["backbone_fpn"][i] = feat.expand(
                batch_size, -1, -1, -1
            )
        for i, pos in enumerate(expanded_backbone_out["vision_pos_enc"]):
            pos = pos.expand(batch_size, -1, -1, -1)
            expanded_backbone_out["vision_pos_enc"][i] = pos

        features = self._prepare_backbone_features(expanded_backbone_out)
        features = (expanded_image,) + features
        return features


    def _run_single_frame_inference(
        self,
        inference_state,
        output_dict,
        frame_idx,
        batch_size,
        is_init_cond_frame,
        point_inputs,
        mask_inputs,
        reverse,
        run_mem_encoder,
        prev_sam_mask_logits=None,
        ## Extension: LLM prompt
        language_embd=None,
    ):
        """Run tracking on a single frame based on current inputs and previous memory."""
        # Retrieve correct image features
        (
            _,
            _,
            current_vision_feats,
            current_vision_pos_embeds,
            feat_sizes,
        ) = self._get_image_feature(inference_state, frame_idx, batch_size)

        # point and mask should not appear as input simultaneously on the same frame
        assert point_inputs is None or mask_inputs is None
        current_out = self.track_step(
            frame_idx=frame_idx,
            is_init_cond_frame=is_init_cond_frame,
            current_vision_feats=current_vision_feats,
            current_vision_pos_embeds=current_vision_pos_embeds,
            feat_sizes=feat_sizes,
            point_inputs=point_inputs,
            mask_inputs=mask_inputs,
            output_dict=output_dict,
            num_frames=inference_state["num_frames"],
            track_in_reverse=reverse,
            run_mem_encoder=run_mem_encoder,
            prev_sam_mask_logits=prev_sam_mask_logits,
            language_embd=language_embd,
        )

        # optionally offload the output to CPU memory to save GPU space
        storage_device = inference_state["storage_device"]
        maskmem_features = current_out["maskmem_features"]
        if maskmem_features is not None:
            maskmem_features = maskmem_features.to(torch.bfloat16)
            maskmem_features = maskmem_features.to(storage_device, non_blocking=True)
        pred_masks_gpu = current_out["pred_masks"]
        # potentially fill holes in the predicted masks
        if self.fill_hole_area > 0:
            pred_masks_gpu = fill_holes_in_mask_scores(
                pred_masks_gpu, self.fill_hole_area
            )
        pred_masks = pred_masks_gpu.to(storage_device, non_blocking=True)
        # "maskmem_pos_enc" is the same across frames, so we only need to store one copy of it
        maskmem_pos_enc = _get_maskmem_pos_enc(inference_state, current_out)
        # object pointer is a small tensor, so we always keep it on GPU memory for fast access
        obj_ptr = current_out["obj_ptr"]
        # make a compact version of this frame's output to reduce the state size
        compact_current_out = {
            "maskmem_features": maskmem_features,
            "maskmem_pos_enc": maskmem_pos_enc,
            "pred_masks": pred_masks,
            "obj_ptr": obj_ptr,
        }
        return compact_current_out, pred_masks_gpu


    def _consolidate_temp_output_across_obj(
        self,
        inference_state,
        frame_idx,
        is_cond,
        run_mem_encoder,
        consolidate_at_video_res=False,
    ):
        """
        Consolidate the per-object temporary outputs in `temp_output_dict_per_obj` on
        a frame into a single output for all objects, including
        1) fill any missing objects either from `output_dict_per_obj` (if they exist in
           `output_dict_per_obj` for this frame) or leave them as placeholder values
           (if they don't exist in `output_dict_per_obj` for this frame);
        2) if specified, rerun memory encoder after apply non-overlapping constraints
           on the object scores.
        """
        batch_size = _get_obj_num(inference_state)
        storage_key = "cond_frame_outputs" if is_cond else "non_cond_frame_outputs"
        # Optionally, we allow consolidating the temporary outputs at the original
        # video resolution (to provide a better editing experience for mask prompts).
        if consolidate_at_video_res:
            assert not run_mem_encoder, "memory encoder cannot run at video resolution"
            consolidated_H = inference_state["video_height"]
            consolidated_W = inference_state["video_width"]
            consolidated_mask_key = "pred_masks_video_res"
        else:
            consolidated_H = consolidated_W = self.image_size // 4
            consolidated_mask_key = "pred_masks"

        # Initialize `consolidated_out`. Its "maskmem_features" and "maskmem_pos_enc"
        # will be added when rerunning the memory encoder after applying non-overlapping
        # constraints to object scores. Its "pred_masks" are prefilled with a large
        # negative value (NO_OBJ_SCORE) to represent missing objects.
        consolidated_out = {
            "maskmem_features": None,
            "maskmem_pos_enc": None,
            consolidated_mask_key: torch.full(
                size=(batch_size, 1, consolidated_H, consolidated_W),
                fill_value=NO_OBJ_SCORE,
                dtype=torch.float32,
                device=inference_state["storage_device"],
            ),
            "obj_ptr": torch.full(
                size=(batch_size, self.hidden_dim),
                fill_value=NO_OBJ_SCORE,
                dtype=torch.float32,
                device=inference_state["device"],
            ),
        }
        empty_mask_ptr = None
        for obj_idx in range(batch_size):
            obj_temp_output_dict = inference_state["temp_output_dict_per_obj"][obj_idx]
            obj_output_dict = inference_state["output_dict_per_obj"][obj_idx]
            out = obj_temp_output_dict[storage_key].get(frame_idx, None)
            # If the object doesn't appear in "temp_output_dict_per_obj" on this frame,
            # we fall back and look up its previous output in "output_dict_per_obj".
            # We look up both "cond_frame_outputs" and "non_cond_frame_outputs" in
            # "output_dict_per_obj" to find a previous output for this object.
            if out is None:
                out = obj_output_dict["cond_frame_outputs"].get(frame_idx, None)
            if out is None:
                out = obj_output_dict["non_cond_frame_outputs"].get(frame_idx, None)
            # If the object doesn't appear in "output_dict_per_obj" either, we skip it
            # and leave its mask scores to the default scores (i.e. the NO_OBJ_SCORE
            # placeholder above) and set its object pointer to be a dummy pointer.
            if out is None:
                # Fill in dummy object pointers for those objects without any inputs or
                # tracking outcomes on this frame (only do it under `run_mem_encoder=True`,
                # i.e. when we need to build the memory for tracking).
                if run_mem_encoder:
                    if empty_mask_ptr is None:
                        empty_mask_ptr = self._get_empty_mask_ptr(
                            inference_state, frame_idx
                        )
                    # fill object pointer with a dummy pointer (based on an empty mask)
                    consolidated_out["obj_ptr"][obj_idx : obj_idx + 1] = empty_mask_ptr
                continue
            # Add the temporary object output mask to consolidated output mask
            obj_mask = out["pred_masks"]
            consolidated_pred_masks = consolidated_out[consolidated_mask_key]
            if obj_mask.shape[-2:] == consolidated_pred_masks.shape[-2:]:
                consolidated_pred_masks[obj_idx : obj_idx + 1] = obj_mask
            else:
                # Resize first if temporary object mask has a different resolution
                resized_obj_mask = torch.nn.functional.interpolate(
                    obj_mask,
                    size=consolidated_pred_masks.shape[-2:],
                    mode="bilinear",
                    align_corners=False,
                )
                consolidated_pred_masks[obj_idx : obj_idx + 1] = resized_obj_mask
            consolidated_out["obj_ptr"][obj_idx : obj_idx + 1] = out["obj_ptr"]

        # Optionally, apply non-overlapping constraints on the consolidated scores
        # and rerun the memory encoder
        if run_mem_encoder:
            device = inference_state["device"]
            high_res_masks = torch.nn.functional.interpolate(
                consolidated_out["pred_masks"].to(device, non_blocking=True),
                size=(self.image_size, self.image_size),
                mode="bilinear",
                align_corners=False,
            )
            if self.non_overlap_masks_for_mem_enc:
                high_res_masks = self._apply_non_overlapping_constraints(high_res_masks)
            maskmem_features, maskmem_pos_enc = self._run_memory_encoder(
                inference_state=inference_state,
                frame_idx=frame_idx,
                batch_size=batch_size,
                high_res_masks=high_res_masks,
                is_mask_from_pts=True,  # these frames are what the user interacted with
            )
            consolidated_out["maskmem_features"] = maskmem_features
            consolidated_out["maskmem_pos_enc"] = maskmem_pos_enc

        return consolidated_out


    def _get_orig_video_res_output(self, inference_state, any_res_masks):
        """
        Resize the object scores to the original video resolution (video_res_masks)
        and apply non-overlapping constraints for final output.
        """
        device = inference_state["device"]
        video_H = inference_state["video_height"]
        video_W = inference_state["video_width"]
        any_res_masks = any_res_masks.to(device, non_blocking=True)
        if any_res_masks.shape[-2:] == (video_H, video_W):
            video_res_masks = any_res_masks
        else:
            video_res_masks = torch.nn.functional.interpolate(
                any_res_masks,
                size=(video_H, video_W),
                mode="bilinear",
                align_corners=False,
            )
        if self.non_overlap_masks:
            video_res_masks = self._apply_non_overlapping_constraints(video_res_masks)
        return any_res_masks, video_res_masks

    def init_state(
        self,
        images
    ):
        """Initialize a inference state."""
        inference_state = {}
        inference_state["images"] = images
        inference_state["num_frames"] = len(images)
        # whether to offload the video frames to CPU memory
        # turning on this option saves the GPU memory with only a very small overhead
        inference_state["offload_video_to_cpu"] = False
        # whether to offload the inference state to CPU memory
        # turning on this option saves the GPU memory at the cost of a lower tracking fps
        # (e.g. in a test case of 768x768 model, fps dropped from 27 to 24 when tracking one object
        # and from 24 to 21 when tracking two objects)
        inference_state["offload_state_to_cpu"] = False
        # the original video height and width, used for resizing final output scores
        inference_state["video_height"] = self.image_size
        inference_state["video_width"] = self.image_size
        inference_state["device"] = torch.device("cuda")
        inference_state["storage_device"] = torch.device("cuda")
        # inputs on each frame
        inference_state["point_inputs_per_obj"] = {}
        inference_state["mask_inputs_per_obj"] = {}
        # visual features on a small number of recently visited frames for quick interactions
        inference_state["cached_features"] = {}
        # values that don't change across frames (so we only need to hold one copy of them)
        inference_state["constants"] = {}
        # mapping between client-side object id and model-side object index
        inference_state["obj_id_to_idx"] = OrderedDict()
        inference_state["obj_idx_to_id"] = OrderedDict()
        inference_state["obj_ids"] = []
        # A storage to hold the model's tracking results and states on each frame
        inference_state["output_dict"] = {
            "cond_frame_outputs": {},  # dict containing {frame_idx: <out>}
            "non_cond_frame_outputs": {},  # dict containing {frame_idx: <out>}
        }
        # Slice (view) of each object tracking results, sharing the same memory with "output_dict"
        inference_state["output_dict_per_obj"] = {}
        # A temporary storage to hold new outputs when user interact with a frame
        # to add clicks or mask (it's merged into "output_dict" before propagation starts)
        inference_state["temp_output_dict_per_obj"] = {}
        # Frames that already holds consolidated outputs from click or mask inputs
        # (we directly use their consolidated outputs during tracking)
        inference_state["consolidated_frame_inds"] = {
            "cond_frame_outputs": set(),  # set containing frame indices
            "non_cond_frame_outputs": set(),  # set containing frame indices
        }
        # metadata for each tracking frame (e.g. which direction it's tracked)
        inference_state["tracking_has_started"] = False
        inference_state["frames_already_tracked"] = {}
        return inference_state

    def add_language_embd(
            self,
            inference_state,
            frame_idx,
            obj_id,
            language_embd,
            inference=False,
    ):
        obj_idx = _obj_id_to_idx(inference_state, obj_id)

        is_init_cond_frame = frame_idx not in inference_state["frames_already_tracked"]
        # whether to track in reverse time order
        if is_init_cond_frame:
            reverse = False
        else:
            reverse = inference_state["frames_already_tracked"][frame_idx]["reverse"]

        obj_output_dict = inference_state["output_dict_per_obj"][obj_idx]
        obj_temp_output_dict = inference_state["temp_output_dict_per_obj"][obj_idx]
        # Add a frame to conditioning output if it's an initial conditioning frame or
        # if the model sees all frames receiving clicks/mask as conditioning frames.
        is_cond = is_init_cond_frame or self.add_all_frames_to_correct_as_cond
        storage_key = "cond_frame_outputs" if is_cond else "non_cond_frame_outputs"

        # Get any previously predicted mask logits on this object and feed it along with
        # the new clicks into the SAM mask decoder.
        prev_sam_mask_logits = None
        # lookup temporary output dict first, which contains the most recent output
        # (if not found, then lookup conditioning and non-conditioning frame output)
        prev_out = obj_temp_output_dict[storage_key].get(frame_idx)
        if prev_out is None:
            prev_out = obj_output_dict["cond_frame_outputs"].get(frame_idx)
            if prev_out is None:
                prev_out = obj_output_dict["non_cond_frame_outputs"].get(frame_idx)

        if prev_out is not None and prev_out["pred_masks"] is not None:
            prev_sam_mask_logits = prev_out["pred_masks"].cuda(non_blocking=True)
            # Clamp the scale of prev_sam_mask_logits to avoid rare numerical issues.
            prev_sam_mask_logits = torch.clamp(prev_sam_mask_logits, -32.0, 32.0)

        current_out, pred_mask_gpu = self._run_single_frame_inference(
            inference_state=inference_state,
            output_dict=obj_output_dict,  # run on the slice of a single object
            frame_idx=frame_idx,
            batch_size=1,  # run on the slice of a single object
            is_init_cond_frame=is_init_cond_frame,
            point_inputs=None,
            mask_inputs=None,
            reverse=reverse,
            # Skip the memory encoder when adding clicks or mask. We execute the memory encoder
            # at the beginning of `propagate_in_video` (after user finalize their clicks). This
            # allows us to enforce non-overlapping constraints on all objects before encoding
            # them into memory.
            run_mem_encoder=False,
            prev_sam_mask_logits=prev_sam_mask_logits,
            ## Extension: LLM prompt
            language_embd=language_embd,
        )
        # Add the output to the output dict (to be used as future memory)
        obj_temp_output_dict[storage_key][frame_idx] = current_out

        # Resize the output mask to the original video resolution
        obj_ids = inference_state["obj_ids"]
        if inference:
            _consolidated_out = self._consolidate_temp_output_across_obj(
                inference_state,
                frame_idx,
                is_cond=is_cond,
                run_mem_encoder=False,
                consolidate_at_video_res=False,
            )
            # _, video_res_masks = self._get_orig_video_res_output(
            #     inference_state, consolidated_out["pred_masks_video_res"]
            # )
        return frame_idx, obj_ids, pred_mask_gpu


    def _clear_non_cond_mem_around_input(self, inference_state, frame_idx):
        """
        Remove the non-conditioning memory around the input frame. When users provide
        correction clicks, the surrounding frames' non-conditioning memories can still
        contain outdated object appearance information and could confuse the model.

        This method clears those non-conditioning memories surrounding the interacted
        frame to avoid giving the model both old and new information about the object.
        """
        r = self.memory_temporal_stride_for_eval
        frame_idx_begin = frame_idx - r * self.num_maskmem
        frame_idx_end = frame_idx + r * self.num_maskmem
        output_dict = inference_state["output_dict"]
        non_cond_frame_outputs = output_dict["non_cond_frame_outputs"]
        for t in range(frame_idx_begin, frame_idx_end + 1):
            non_cond_frame_outputs.pop(t, None)
            for obj_output_dict in inference_state["output_dict_per_obj"].values():
                obj_output_dict["non_cond_frame_outputs"].pop(t, None)

    def _run_memory_encoder(
        self, inference_state, frame_idx, batch_size, high_res_masks, is_mask_from_pts
    ):
        """
        Run the memory encoder on `high_res_masks`. This is usually after applying
        non-overlapping constraints to object scores. Since their scores changed, their
        memory also need to be computed again with the memory encoder.
        """
        # Retrieve correct image features
        _, _, current_vision_feats, _, feat_sizes = self._get_image_feature(
            inference_state, frame_idx, batch_size
        )
        maskmem_features, maskmem_pos_enc = self._encode_new_memory(
            current_vision_feats=current_vision_feats,
            feat_sizes=feat_sizes,
            pred_masks_high_res=high_res_masks,
            is_mask_from_pts=is_mask_from_pts,
        )

        # optionally offload the output to CPU memory to save GPU space
        storage_device = inference_state["storage_device"]
        maskmem_features = maskmem_features.to(torch.bfloat16)
        maskmem_features = maskmem_features.to(storage_device, non_blocking=True)
        # "maskmem_pos_enc" is the same across frames, so we only need to store one copy of it
        maskmem_pos_enc = _get_maskmem_pos_enc(
            inference_state, {"maskmem_pos_enc": maskmem_pos_enc}
        )
        return maskmem_features, maskmem_pos_enc

    def _add_output_per_object(
        self, inference_state, frame_idx, current_out, storage_key
    ):
        """
        Split a multi-object output into per-object output slices and add them into
        `output_dict_per_obj`. The resulting slices share the same tensor storage.
        """
        maskmem_features = current_out["maskmem_features"]
        assert maskmem_features is None or isinstance(maskmem_features, torch.Tensor)

        maskmem_pos_enc = current_out["maskmem_pos_enc"]
        assert maskmem_pos_enc is None or isinstance(maskmem_pos_enc, list)

        output_dict_per_obj = inference_state["output_dict_per_obj"]
        for obj_idx, obj_output_dict in output_dict_per_obj.items():
            obj_slice = slice(obj_idx, obj_idx + 1)
            obj_out = {
                "maskmem_features": None,
                "maskmem_pos_enc": None,
                "pred_masks": current_out["pred_masks"][obj_slice],
                "obj_ptr": current_out["obj_ptr"][obj_slice],
            }
            if maskmem_features is not None:
                obj_out["maskmem_features"] = maskmem_features[obj_slice]
            if maskmem_pos_enc is not None:
                obj_out["maskmem_pos_enc"] = [x[obj_slice] for x in maskmem_pos_enc]
            obj_output_dict[storage_key][frame_idx] = obj_out

    @torch.inference_mode()
    def propagate_in_video_preflight(self, inference_state):
        """Prepare inference_state and consolidate temporary outputs before tracking."""
        # Tracking has started and we don't allow adding new objects until session is reset.
        inference_state["tracking_has_started"] = True
        batch_size = _get_obj_num(inference_state)

        # Consolidate per-object temporary outputs in "temp_output_dict_per_obj" and
        # add them into "output_dict".
        temp_output_dict_per_obj = inference_state["temp_output_dict_per_obj"]
        output_dict = inference_state["output_dict"]
        # "consolidated_frame_inds" contains indices of those frames where consolidated
        # temporary outputs have been added (either in this call or any previous calls
        # to `propagate_in_video_preflight`).
        consolidated_frame_inds = inference_state["consolidated_frame_inds"]
        for is_cond in [False, True]:
            # Separately consolidate conditioning and non-conditioning temp outptus
            storage_key = "cond_frame_outputs" if is_cond else "non_cond_frame_outputs"
            # Find all the frames that contain temporary outputs for any objects
            # (these should be the frames that have just received clicks for mask inputs
            # via `add_new_points` or `add_new_mask`)
            temp_frame_inds = set()
            for obj_temp_output_dict in temp_output_dict_per_obj.values():
                temp_frame_inds.update(obj_temp_output_dict[storage_key].keys())
            consolidated_frame_inds[storage_key].update(temp_frame_inds)
            # consolidate the temprary output across all objects on this frame
            for frame_idx in temp_frame_inds:
                consolidated_out = self._consolidate_temp_output_across_obj(
                    inference_state, frame_idx, is_cond=is_cond, run_mem_encoder=True
                )
                # merge them into "output_dict" and also create per-object slices
                output_dict[storage_key][frame_idx] = consolidated_out
                self._add_output_per_object(
                    inference_state, frame_idx, consolidated_out, storage_key
                )
                clear_non_cond_mem = self.clear_non_cond_mem_around_input and (
                    self.clear_non_cond_mem_for_multi_obj or batch_size <= 1
                )
                if clear_non_cond_mem:
                    # clear non-conditioning memory of the surrounding frames
                    self._clear_non_cond_mem_around_input(inference_state, frame_idx)

            # clear temporary outputs in `temp_output_dict_per_obj`
            for obj_temp_output_dict in temp_output_dict_per_obj.values():
                obj_temp_output_dict[storage_key].clear()

        # edge case: if an output is added to "cond_frame_outputs", we remove any prior
        # output on the same frame in "non_cond_frame_outputs"
        for frame_idx in output_dict["cond_frame_outputs"]:
            output_dict["non_cond_frame_outputs"].pop(frame_idx, None)
        for obj_output_dict in inference_state["output_dict_per_obj"].values():
            for frame_idx in obj_output_dict["cond_frame_outputs"]:
                obj_output_dict["non_cond_frame_outputs"].pop(frame_idx, None)
        for frame_idx in consolidated_frame_inds["cond_frame_outputs"]:
            assert frame_idx in output_dict["cond_frame_outputs"]
            consolidated_frame_inds["non_cond_frame_outputs"].discard(frame_idx)

        # Make sure that the frame indices in "consolidated_frame_inds" are exactly those frames
        # with either points or mask inputs (which should be true under a correct workflow).
        all_consolidated_frame_inds = (
            consolidated_frame_inds["cond_frame_outputs"]
            | consolidated_frame_inds["non_cond_frame_outputs"]
        )
        input_frames_inds = set()
        for point_inputs_per_frame in inference_state["point_inputs_per_obj"].values():
            input_frames_inds.update(point_inputs_per_frame.keys())
        for mask_inputs_per_frame in inference_state["mask_inputs_per_obj"].values():
            input_frames_inds.update(mask_inputs_per_frame.keys())

        # with language embd as input, there may not be point or box
        # assert all_consolidated_frame_inds == input_frames_inds

    @torch.inference_mode()
    def propagate_in_video(
        self,
        inference_state,
        start_frame_idx=None,
        max_frame_num_to_track=None,
        reverse=False,
    ):
        """Propagate the input points across frames to track in the entire video."""
        self.propagate_in_video_preflight(inference_state)

        output_dict = inference_state["output_dict"]
        consolidated_frame_inds = inference_state["consolidated_frame_inds"]
        obj_ids = inference_state["obj_ids"]
        num_frames = inference_state["num_frames"]
        batch_size = _get_obj_num(inference_state)
        if len(output_dict["cond_frame_outputs"]) == 0:
            raise RuntimeError("No points are provided; please add points first")
        clear_non_cond_mem = self.clear_non_cond_mem_around_input and (
            self.clear_non_cond_mem_for_multi_obj or batch_size <= 1
        )

        # set start index, end index, and processing order
        if start_frame_idx is None:
            # default: start from the earliest frame with input points
            start_frame_idx = min(output_dict["cond_frame_outputs"])
        if max_frame_num_to_track is None:
            # default: track all the frames in the video
            max_frame_num_to_track = num_frames
        if reverse:
            end_frame_idx = max(start_frame_idx - max_frame_num_to_track, 0)
            if start_frame_idx > 0:
                processing_order = range(start_frame_idx, end_frame_idx - 1, -1)
            else:
                processing_order = []  # skip reverse tracking if starting from frame 0
        else:
            end_frame_idx = min(
                start_frame_idx + max_frame_num_to_track, num_frames - 1
            )
            processing_order = range(start_frame_idx, end_frame_idx + 1)

        for frame_idx in tqdm(processing_order, desc="propagate in video", disable=True):
            # We skip those frames already in consolidated outputs (these are frames
            # that received input clicks or mask). Note that we cannot directly run
            # batched forward on them via `_run_single_frame_inference` because the
            # number of clicks on each object might be different.
            if frame_idx in consolidated_frame_inds["cond_frame_outputs"]:
                storage_key = "cond_frame_outputs"
                current_out = output_dict[storage_key][frame_idx]
                pred_masks = current_out["pred_masks"]
                if clear_non_cond_mem:
                    # clear non-conditioning memory of the surrounding frames
                    self._clear_non_cond_mem_around_input(inference_state, frame_idx)
            elif frame_idx in consolidated_frame_inds["non_cond_frame_outputs"]:
                storage_key = "non_cond_frame_outputs"
                current_out = output_dict[storage_key][frame_idx]
                pred_masks = current_out["pred_masks"]
            else:
                storage_key = "non_cond_frame_outputs"
                current_out, pred_masks = self._run_single_frame_inference(
                    inference_state=inference_state,
                    output_dict=output_dict,
                    frame_idx=frame_idx,
                    batch_size=batch_size,
                    is_init_cond_frame=False,
                    point_inputs=None,
                    mask_inputs=None,
                    reverse=reverse,
                    run_mem_encoder=True,
                )
                output_dict[storage_key][frame_idx] = current_out
            # Create slices of per-object outputs for subsequent interaction with each
            # individual object after tracking.
            self._add_output_per_object(
                inference_state, frame_idx, current_out, storage_key
            )
            inference_state["frames_already_tracked"][frame_idx] = {"reverse": reverse}

            # Resize the output mask to the original video resolution (we directly use
            # the mask scores on GPU for output to avoid any CPU conversion in between)
            _, video_res_masks = self._get_orig_video_res_output(
                inference_state, pred_masks
            )
            yield frame_idx, obj_ids, video_res_masks

def fill_holes_in_mask_scores(mask, max_area):
    """
    A post processor to fill small holes in mask scores with area under `max_area`.
    """
    # Holes are those connected components in background with area <= self.max_area
    # (background regions are those with mask scores <= 0)
    assert max_area > 0, "max_area must be positive"
    labels, areas = get_connected_components(mask <= 0)
    is_hole = (labels > 0) & (areas <= max_area)
    # We fill holes with a small positive mask score (0.1) to change them to foreground.
    mask = torch.where(is_hole, 0.1, mask)
    return mask

def get_connected_components(mask):
    """
    Get the connected components (8-connectivity) of binary masks of shape (N, 1, H, W).

    Inputs:
    - mask: A binary mask tensor of shape (N, 1, H, W), where 1 is foreground and 0 is
            background.

    Outputs:
    - labels: A tensor of shape (N, 1, H, W) containing the connected component labels
              for foreground pixels and 0 for background pixels.
    - counts: A tensor of shape (N, 1, H, W) containing the area of the connected
              components for foreground pixels and 0 for background pixels.
    """
    from torch.utils.cpp_extension import load
    os.system("wget https://github.com/facebookresearch/sam2/blob/main/sam2/csrc/connected_components.cu")
    get_connected_componnets = load(
        name="get_connected_componnets",
        sources=["./connected_components.cu"],
        verbose=True,
        extra_cuda_cflags=[
            "-DCUDA_HAS_FP16=1",
            "-D__CUDA_NO_HALF_OPERATORS__",
            "-D__CUDA_NO_HALF_CONVERSIONS__",
            "-D__CUDA_NO_HALF2_OPERATORS__",
        ]
    )

    return get_connected_componnets.get_connected_componnets(mask.to(torch.uint8).contiguous())