import os from collections import OrderedDict from tqdm import tqdm import torch.distributed from torch.nn.init import trunc_normal_ import copy from typing import List, Any, Optional, Tuple, Type, Union import numpy as np import math import warnings from functools import partial import torch import torch.nn.functional as F from torch import nn, Tensor # a large negative value as a placeholder score for missing objects NO_OBJ_SCORE = -1024.0 warnings.simplefilter(action="ignore", category=FutureWarning) # OLD_GPU, USE_FLASH_ATTN, MATH_KERNEL_ON = get_sdpa_settings() OLD_GPU, USE_FLASH_ATTN, MATH_KERNEL_ON = True, True, True def load_checkpoint_with_prefix(filename, prefix=None, map_location='cpu', logger='current'): """Load partial pretrained model with specific prefix. Args: prefix (str): The prefix of sub-module. filename (str): Accept local filepath, URL, ``torchvision://xxx``, ``open-mmlab://xxx``. Please refer to ``docs/model_zoo.md`` for details. map_location (str | None): Same as :func:`torch.load`. Defaults to None. logger: logger Returns: dict or OrderedDict: The loaded checkpoint. """ checkpoint = torch.load(filename, map_location=map_location) if 'state_dict' in checkpoint: state_dict = checkpoint['state_dict'] elif 'model' in checkpoint: state_dict = checkpoint['model'] else: state_dict = checkpoint if not prefix: return state_dict if not prefix.endswith('.'): prefix += '.' prefix_len = len(prefix) state_dict = { k[prefix_len:]: v for k, v in state_dict.items() if k.startswith(prefix) } assert state_dict, f'{prefix} is not in the pretrained model' return state_dict def load_state_dict_to_model(model, state_dict, logger='current'): missing_keys, unexpected_keys = model.load_state_dict(state_dict) if missing_keys: print(missing_keys) raise RuntimeError() if unexpected_keys: print(unexpected_keys) raise RuntimeError() print("Loaded checkpoint successfully") class SAM2(nn.Module): def __init__( self, ckpt_path: str = None, ): super().__init__() image_encoder = self.build_image_encoder() memory_attention = self.build_memory_attention() memory_encoder = self.build_memory_encoder() sam2_model = SAM2VideoPredictor( image_encoder=image_encoder, memory_attention=memory_attention, memory_encoder=memory_encoder, num_maskmem = 7, image_size = 1024, # apply scaled sigmoid on mask logits for memory encoder, and directly feed input mask as output mask sigmoid_scale_for_mem_enc = 20.0, sigmoid_bias_for_mem_enc = -10.0, use_mask_input_as_output_without_sam = True, # Memory directly_add_no_mem_embed = True, # use high-resolution feature map in the SAM mask decoder use_high_res_features_in_sam = True, # output 3 masks on the first click on initial conditioning frames multimask_output_in_sam = True, # SAM heads iou_prediction_use_sigmoid = True, # cross-attend to object pointers from other frames (based on SAM output tokens) in the encoder use_obj_ptrs_in_encoder = True, add_tpos_enc_to_obj_ptrs = False, only_obj_ptrs_in_the_past_for_eval = True, # object occlusion prediction pred_obj_scores = True, pred_obj_scores_mlp = True, fixed_no_obj_ptr = True, # multimask tracking settings multimask_output_for_tracking = True, use_multimask_token_for_obj_ptr = True, multimask_min_pt_num = 0, multimask_max_pt_num = 1, use_mlp_for_obj_ptr_proj = True, # Compilation flag compile_image_encoder = False, sam_mask_decoder_extra_args={ 'dynamic_multimask_via_stability':True, 'dynamic_multimask_stability_delta': 0.05, 'dynamic_multimask_stability_thresh': 0.98, } ) if ckpt_path is not None: state_dict = load_checkpoint_with_prefix(ckpt_path) load_state_dict_to_model(sam2_model, state_dict) self.sam2_model = sam2_model self.hidden_dim = self.sam2_model.hidden_dim self.img_mean = (0.485, 0.456, 0.406) self.img_std = (0.229, 0.224, 0.225) def build_image_encoder(self): def build_trunk(): embed_dim = 144 num_heads = 2 stages = [2, 6, 36, 4] global_att_blocks = [23, 33, 43] window_pos_embed_bkg_spatial_size = [7, 7] window_spec = [8, 4, 16, 8] ret = Hiera( embed_dim=embed_dim, num_heads=num_heads, stages=stages, global_att_blocks=global_att_blocks, window_pos_embed_bkg_spatial_size=window_pos_embed_bkg_spatial_size, window_spec=window_spec, ) return ret def build_neck(): def build_position_encoding(): num_pos_feats = 256 normalize = True scale = None temperature = 10000 ret = PositionEmbeddingSine( num_pos_feats=num_pos_feats, normalize=normalize, scale=scale, temperature=temperature, ) return ret d_model = 256 backbone_channel_list = [1152, 576, 288, 144] fpn_top_down_levels = [2, 3] # output level 0 and 1 directly use the backbone features fpn_interp_model = 'nearest' position_encoding = build_position_encoding() ret = FpnNeck( d_model=d_model, position_encoding=position_encoding, backbone_channel_list=backbone_channel_list, fpn_top_down_levels=fpn_top_down_levels, fpn_interp_model=fpn_interp_model, ) return ret scalp = 1 trunk = build_trunk() neck = build_neck() ret = ImageEncoder(scalp=scalp, trunk=trunk, neck=neck) return ret def build_memory_attention(self): def build_layer(): def build_self_attention(): rope_theta = 10000.0 feat_sizes = [32, 32] embedding_dim = 256 num_heads = 1 downsample_rate = 1 dropout = 0.1 ret = RoPEAttention( rope_theta=rope_theta, feat_sizes=feat_sizes, embedding_dim=embedding_dim, num_heads=num_heads, downsample_rate=downsample_rate, dropout=dropout ) return ret def build_cross_attention(): rope_theta = 10000.0 feat_sizes = [32, 32] rope_k_repeat = True embedding_dim = 256 num_heads = 1 downsample_rate = 1 dropout = 0.1 kv_in_dim = 64 ret = RoPEAttention( rope_theta=rope_theta, feat_sizes=feat_sizes, rope_k_repeat=rope_k_repeat, embedding_dim=embedding_dim, num_heads=num_heads, downsample_rate=downsample_rate, dropout=dropout, kv_in_dim=kv_in_dim ) return ret activation = 'relu' dim_feedforward = 2048 dropout = 0.1 pos_enc_at_attn = False d_model = 256 pos_enc_at_cross_attn_keys = True pos_enc_at_cross_attn_queries = False self_attention = build_self_attention() cross_attention = build_cross_attention() ret = MemoryAttentionLayer( activation=activation, dim_feedforward=dim_feedforward, dropout=dropout, pos_enc_at_attn=pos_enc_at_attn, d_model=d_model, pos_enc_at_cross_attn_queries=pos_enc_at_cross_attn_queries, pos_enc_at_cross_attn_keys=pos_enc_at_cross_attn_keys, self_attention=self_attention, cross_attention=cross_attention, ) return ret d_model = 256 pos_enc_at_input = True num_layers = 4 layer = build_layer() ret = MemoryAttention( d_model=d_model, pos_enc_at_input=pos_enc_at_input, num_layers=num_layers, layer=layer, ) return ret def build_memory_encoder(self): def build_position_encoding(): num_pos_feats = 64 normalize = True scale = None temperature = 10000 ret = PositionEmbeddingSine( num_pos_feats=num_pos_feats, normalize=normalize, scale=scale, temperature=temperature, ) return ret def build_mask_downsampler(): kernel_size = 3 stride = 2 padding = 1 ret = MaskDownSampler( kernel_size=kernel_size, stride=stride, padding=padding, ) return ret def build_fuser(): def build_layer(): dim = 256 kernel_size = 7 padding = 3 layer_scale_init_value = 1e-6 use_dwconv = True # depth-wise convs ret = CXBlock( dim=dim, kernel_size=kernel_size, padding=padding, layer_scale_init_value=layer_scale_init_value, use_dwconv=use_dwconv, ) return ret num_layers = 2 layer = build_layer() ret = Fuser( layer=layer, num_layers=num_layers ) return ret out_dim = 64 position_encoding = build_position_encoding() mask_downsampler = build_mask_downsampler() fuser = build_fuser() ret = MemoryEncoder( out_dim=out_dim, position_encoding=position_encoding, mask_downsampler=mask_downsampler, fuser=fuser, ) return ret def inject_language_embd(self, inference_state, language_embd): num_frame = len(language_embd) num_obj = len(language_embd[0]) mask_out = [] for frame_idx in range(num_frame): frame_mask_out = [] for obj_idx in range(num_obj): _language_embd = language_embd[frame_idx][obj_idx][None][None] _, _, out_mask_logits = self.sam2_model.add_language_embd(inference_state, frame_idx, obj_idx + 100, _language_embd) frame_mask_out.append(out_mask_logits) frame_mask_out = torch.cat(frame_mask_out, dim=1) mask_out.append(frame_mask_out) mask_out = torch.cat(mask_out, dim=0) return mask_out def language_embd_inference(self, inference_state, language_embd): num_frame = len(language_embd) num_obj = len(language_embd[0]) mask_out = [] with torch.autocast(device_type="cuda", dtype=torch.bfloat16): for frame_idx in range(num_frame): frame_mask_out = [] for obj_idx in range(num_obj): _language_embd = language_embd[frame_idx][obj_idx][None][None] _, _, out_mask_logits = self.sam2_model.add_language_embd( inference_state, frame_idx, obj_idx + 100, _language_embd, inference=True, ) frame_mask_out.append(out_mask_logits) frame_mask_out = torch.cat(frame_mask_out, dim=1) mask_out.append(frame_mask_out) mask_out = [] for out_frame_idx, out_obj_ids, out_mask_logits in self.sam2_model.propagate_in_video(inference_state): mask_out.append(out_mask_logits) mask_out = torch.cat(mask_out, dim=0) return mask_out def get_sam2_embeddings(self, images): return self.sam2_model.init_state(images) def forward(self, batch): raise NotImplementedError def preprocess_image(self, image: torch.Tensor, dtype=torch.bfloat16) -> torch.Tensor: image = image / 255. img_mean = torch.tensor(self.img_mean, dtype=dtype, device=image.device)[:, None, None] img_std = torch.tensor(self.img_std, dtype=dtype, device=image.device)[:, None, None] image -= img_mean image /= img_std return image class MemoryAttentionLayer(nn.Module): def __init__( self, activation: str, cross_attention: nn.Module, d_model: int, dim_feedforward: int, dropout: float, pos_enc_at_attn: bool, pos_enc_at_cross_attn_keys: bool, pos_enc_at_cross_attn_queries: bool, self_attention: nn.Module, ): super().__init__() self.d_model = d_model self.dim_feedforward = dim_feedforward self.dropout_value = dropout self.self_attn = self_attention self.cross_attn_image = cross_attention # Implementation of Feedforward model self.linear1 = nn.Linear(d_model, dim_feedforward) self.dropout = nn.Dropout(dropout) self.linear2 = nn.Linear(dim_feedforward, d_model) self.norm1 = nn.LayerNorm(d_model) self.norm2 = nn.LayerNorm(d_model) self.norm3 = nn.LayerNorm(d_model) self.dropout1 = nn.Dropout(dropout) self.dropout2 = nn.Dropout(dropout) self.dropout3 = nn.Dropout(dropout) self.activation_str = activation self.activation = get_activation_fn(activation) # Where to add pos enc self.pos_enc_at_attn = pos_enc_at_attn self.pos_enc_at_cross_attn_queries = pos_enc_at_cross_attn_queries self.pos_enc_at_cross_attn_keys = pos_enc_at_cross_attn_keys def _forward_sa(self, tgt, query_pos): # Self-Attention tgt2 = self.norm1(tgt) q = k = tgt2 + query_pos if self.pos_enc_at_attn else tgt2 tgt2 = self.self_attn(q, k, v=tgt2) tgt = tgt + self.dropout1(tgt2) return tgt def _forward_ca(self, tgt, memory, query_pos, pos, num_k_exclude_rope=0): kwds = {} if num_k_exclude_rope > 0: assert isinstance(self.cross_attn_image, RoPEAttention) kwds = {"num_k_exclude_rope": num_k_exclude_rope} # Cross-Attention tgt2 = self.norm2(tgt) tgt2 = self.cross_attn_image( q=tgt2 + query_pos if self.pos_enc_at_cross_attn_queries else tgt2, k=memory + pos if self.pos_enc_at_cross_attn_keys else memory, v=memory, **kwds, ) tgt = tgt + self.dropout2(tgt2) return tgt def forward( self, tgt, memory, pos: Optional[Tensor] = None, query_pos: Optional[Tensor] = None, num_k_exclude_rope: int = 0, ) -> torch.Tensor: # Self-Attn, Cross-Attn tgt = self._forward_sa(tgt, query_pos) tgt = self._forward_ca(tgt, memory, query_pos, pos, num_k_exclude_rope) # MLP tgt2 = self.norm3(tgt) tgt2 = self.linear2(self.dropout(self.activation(self.linear1(tgt2)))) tgt = tgt + self.dropout3(tgt2) return tgt class MemoryAttention(nn.Module): def __init__( self, d_model: int, pos_enc_at_input: bool, layer: nn.Module, num_layers: int, batch_first: bool = True, # Do layers expect batch first input? ): super().__init__() self.d_model = d_model self.layers = get_clones(layer, num_layers) self.num_layers = num_layers self.norm = nn.LayerNorm(d_model) self.pos_enc_at_input = pos_enc_at_input self.batch_first = batch_first def forward( self, curr: torch.Tensor, # self-attention inputs memory: torch.Tensor, # cross-attention inputs curr_pos: Optional[Tensor] = None, # pos_enc for self-attention inputs memory_pos: Optional[Tensor] = None, # pos_enc for cross-attention inputs num_obj_ptr_tokens: int = 0, # number of object pointer *tokens* ): if isinstance(curr, list): assert isinstance(curr_pos, list) assert len(curr) == len(curr_pos) == 1 curr, curr_pos = ( curr[0], curr_pos[0], ) assert ( curr.shape[1] == memory.shape[1] ), "Batch size must be the same for curr and memory" output = curr if self.pos_enc_at_input and curr_pos is not None: output = output + 0.1 * curr_pos if self.batch_first: # Convert to batch first output = output.transpose(0, 1) curr_pos = curr_pos.transpose(0, 1) memory = memory.transpose(0, 1) memory_pos = memory_pos.transpose(0, 1) for layer in self.layers: kwds = {} if isinstance(layer.cross_attn_image, RoPEAttention): kwds = {"num_k_exclude_rope": num_obj_ptr_tokens} output = layer( tgt=output, memory=memory, pos=memory_pos, query_pos=curr_pos, **kwds, ) normed_output = self.norm(output) if self.batch_first: # Convert back to seq first normed_output = normed_output.transpose(0, 1) curr_pos = curr_pos.transpose(0, 1) return normed_output class MaskDownSampler(nn.Module): """ Progressively downsample a mask by total_stride, each time by stride. Note that LayerNorm is applied per *token*, like in ViT. With each downsample (by a factor stride**2), channel capacity increases by the same factor. In the end, we linearly project to embed_dim channels. """ def __init__( self, embed_dim=256, kernel_size=4, stride=4, padding=0, total_stride=16, activation=nn.GELU, ): super().__init__() num_layers = int(math.log2(total_stride) // math.log2(stride)) assert stride**num_layers == total_stride self.encoder = nn.Sequential() mask_in_chans, mask_out_chans = 1, 1 for _ in range(num_layers): mask_out_chans = mask_in_chans * (stride**2) self.encoder.append( nn.Conv2d( mask_in_chans, mask_out_chans, kernel_size=kernel_size, stride=stride, padding=padding, ) ) self.encoder.append(LayerNorm2d(mask_out_chans)) self.encoder.append(activation()) mask_in_chans = mask_out_chans self.encoder.append(nn.Conv2d(mask_out_chans, embed_dim, kernel_size=1)) def forward(self, x): return self.encoder(x) # Lightly adapted from ConvNext (https://github.com/facebookresearch/ConvNeXt) class CXBlock(nn.Module): r"""ConvNeXt Block. There are two equivalent implementations: (1) DwConv -> LayerNorm (channels_first) -> 1x1 Conv -> GELU -> 1x1 Conv; all in (N, C, H, W) (2) DwConv -> Permute to (N, H, W, C); LayerNorm (channels_last) -> Linear -> GELU -> Linear; Permute back We use (2) as we find it slightly faster in PyTorch Args: dim (int): Number of input channels. drop_path (float): Stochastic depth rate. Default: 0.0 layer_scale_init_value (float): Init value for Layer Scale. Default: 1e-6. """ def __init__( self, dim, kernel_size=7, padding=3, drop_path=0.0, layer_scale_init_value=1e-6, use_dwconv=True, ): super().__init__() self.dwconv = nn.Conv2d( dim, dim, kernel_size=kernel_size, padding=padding, groups=dim if use_dwconv else 1, ) # depthwise conv self.norm = LayerNorm2d(dim, eps=1e-6) self.pwconv1 = nn.Linear( dim, 4 * dim ) # pointwise/1x1 convs, implemented with linear layers self.act = nn.GELU() self.pwconv2 = nn.Linear(4 * dim, dim) # self.gamma = ( self.g_weight = ( nn.Parameter(layer_scale_init_value * torch.ones((dim)), requires_grad=True) if layer_scale_init_value > 0 else None ) self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() def forward(self, x): input = x x = self.dwconv(x) x = self.norm(x) x = x.permute(0, 2, 3, 1) # (N, C, H, W) -> (N, H, W, C) x = self.pwconv1(x) x = self.act(x) x = self.pwconv2(x) if self.g_weight is not None: x = self.g_weight * x x = x.permute(0, 3, 1, 2) # (N, H, W, C) -> (N, C, H, W) x = input + self.drop_path(x) return x class Fuser(nn.Module): def __init__(self, layer, num_layers, dim=None, input_projection=False): super().__init__() self.proj = nn.Identity() self.layers = get_clones(layer, num_layers) if input_projection: assert dim is not None self.proj = nn.Conv2d(dim, dim, kernel_size=1) def forward(self, x): # normally x: (N, C, H, W) x = self.proj(x) for layer in self.layers: x = layer(x) return x class MemoryEncoder(nn.Module): def __init__( self, out_dim, mask_downsampler, fuser, position_encoding, in_dim=256, # in_dim of pix_feats ): super().__init__() self.mask_downsampler = mask_downsampler self.pix_feat_proj = nn.Conv2d(in_dim, in_dim, kernel_size=1) self.fuser = fuser self.position_encoding = position_encoding self.out_proj = nn.Identity() if out_dim != in_dim: self.out_proj = nn.Conv2d(in_dim, out_dim, kernel_size=1) def forward( self, pix_feat: torch.Tensor, masks: torch.Tensor, skip_mask_sigmoid: bool = False, ) -> Tuple[torch.Tensor, torch.Tensor]: ## Process masks # sigmoid, so that less domain shift from gt masks which are bool if not skip_mask_sigmoid: masks = F.sigmoid(masks) masks = self.mask_downsampler(masks) ## Fuse pix_feats and downsampled masks # in case the visual features are on CPU, cast them to CUDA pix_feat = pix_feat.to(masks.device) x = self.pix_feat_proj(pix_feat) x = x + masks x = self.fuser(x) x = self.out_proj(x) pos = self.position_encoding(x).to(x.dtype) return {"vision_features": x, "vision_pos_enc": [pos]} class ImageEncoder(nn.Module): def __init__( self, trunk: nn.Module, neck: nn.Module, scalp: int = 0, ): super().__init__() self.trunk = trunk self.neck = neck self.scalp = scalp assert ( self.trunk.channel_list == self.neck.backbone_channel_list ), f"Channel dims of trunk and neck do not match. Trunk: {self.trunk.channel_list}, neck: {self.neck.backbone_channel_list}" def forward(self, sample: torch.Tensor): # Forward through backbone features, pos = self.neck(self.trunk(sample)) if self.scalp > 0: # Discard the lowest resolution features features, pos = features[: -self.scalp], pos[: -self.scalp] src = features[-1] output = { "vision_features": src, "vision_pos_enc": pos, "backbone_fpn": features, } return output class FpnNeck(nn.Module): """ A modified variant of Feature Pyramid Network (FPN) neck (we remove output conv and also do bicubic interpolation similar to ViT pos embed interpolation) """ def __init__( self, position_encoding: nn.Module, d_model: int, backbone_channel_list: List[int], kernel_size: int = 1, stride: int = 1, padding: int = 0, fpn_interp_model: str = "bilinear", fuse_type: str = "sum", fpn_top_down_levels: Optional[List[int]] = None, ): """Initialize the neck :param trunk: the backbone :param position_encoding: the positional encoding to use :param d_model: the dimension of the model :param neck_norm: the normalization to use """ super().__init__() self.position_encoding = position_encoding self.convs = nn.ModuleList() self.backbone_channel_list = backbone_channel_list for dim in backbone_channel_list: current = nn.Sequential() current.add_module( "conv", nn.Conv2d( in_channels=dim, out_channels=d_model, kernel_size=kernel_size, stride=stride, padding=padding, ), ) self.convs.append(current) self.fpn_interp_model = fpn_interp_model assert fuse_type in ["sum", "avg"] self.fuse_type = fuse_type # levels to have top-down features in its outputs # e.g. if fpn_top_down_levels is [2, 3], then only outputs of level 2 and 3 # have top-down propagation, while outputs of level 0 and level 1 have only # lateral features from the same backbone level. if fpn_top_down_levels is None: # default is to have top-down features on all levels fpn_top_down_levels = range(len(self.convs)) self.fpn_top_down_levels = list(fpn_top_down_levels) def forward(self, xs: List[torch.Tensor]): out = [None] * len(self.convs) pos = [None] * len(self.convs) assert len(xs) == len(self.convs) # fpn forward pass # see https://github.com/facebookresearch/detectron2/blob/main/detectron2/modeling/backbone/fpn.py prev_features = None # forward in top-down order (from low to high resolution) n = len(self.convs) - 1 for i in range(n, -1, -1): x = xs[i] lateral_features = self.convs[n - i](x) if i in self.fpn_top_down_levels and prev_features is not None: top_down_features = F.interpolate( prev_features.to(dtype=torch.float32), scale_factor=2.0, mode=self.fpn_interp_model, align_corners=( None if self.fpn_interp_model == "nearest" else False ), antialias=False, ) prev_features = lateral_features + top_down_features if self.fuse_type == "avg": prev_features /= 2 else: prev_features = lateral_features x_out = prev_features out[i] = x_out pos[i] = self.position_encoding(x_out).to(x_out.dtype) return out, pos def window_partition(x, window_size): """ Partition into non-overlapping windows with padding if needed. Args: x (tensor): input tokens with [B, H, W, C]. window_size (int): window size. Returns: windows: windows after partition with [B * num_windows, window_size, window_size, C]. (Hp, Wp): padded height and width before partition """ B, H, W, C = x.shape pad_h = (window_size - H % window_size) % window_size pad_w = (window_size - W % window_size) % window_size if pad_h > 0 or pad_w > 0: x = F.pad(x, (0, 0, 0, pad_w, 0, pad_h)) Hp, Wp = H + pad_h, W + pad_w x = x.view(B, Hp // window_size, window_size, Wp // window_size, window_size, C) windows = ( x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C) ) return windows, (Hp, Wp) def window_unpartition(windows, window_size, pad_hw, hw): """ Window unpartition into original sequences and removing padding. Args: x (tensor): input tokens with [B * num_windows, window_size, window_size, C]. window_size (int): window size. pad_hw (Tuple): padded height and width (Hp, Wp). hw (Tuple): original height and width (H, W) before padding. Returns: x: unpartitioned sequences with [B, H, W, C]. """ Hp, Wp = pad_hw H, W = hw B = windows.shape[0] // (Hp * Wp // window_size // window_size) x = windows.view( B, Hp // window_size, Wp // window_size, window_size, window_size, -1 ) x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, Hp, Wp, -1) if Hp > H or Wp > W: x = x[:, :H, :W, :].contiguous() return x class PatchEmbed(nn.Module): """ Image to Patch Embedding. """ def __init__( self, kernel_size: Tuple[int, ...] = (7, 7), stride: Tuple[int, ...] = (4, 4), padding: Tuple[int, ...] = (3, 3), in_chans: int = 3, embed_dim: int = 768, ): """ Args: kernel_size (Tuple): kernel size of the projection layer. stride (Tuple): stride of the projection layer. padding (Tuple): padding size of the projection layer. in_chans (int): Number of input image channels. embed_dim (int): embed_dim (int): Patch embedding dimension. """ super().__init__() self.proj = nn.Conv2d( in_chans, embed_dim, kernel_size=kernel_size, stride=stride, padding=padding ) def forward(self, x: torch.Tensor) -> torch.Tensor: x = self.proj(x) # B C H W -> B H W C x = x.permute(0, 2, 3, 1) return x def do_pool(x: torch.Tensor, pool: nn.Module, norm: nn.Module = None) -> torch.Tensor: if pool is None: return x # (B, H, W, C) -> (B, C, H, W) x = x.permute(0, 3, 1, 2) x = pool(x) # (B, C, H', W') -> (B, H', W', C) x = x.permute(0, 2, 3, 1) if norm: x = norm(x) return x class MultiScaleAttention(nn.Module): def __init__( self, dim: int, dim_out: int, num_heads: int, q_pool: nn.Module = None, ): super().__init__() self.dim = dim self.dim_out = dim_out self.num_heads = num_heads head_dim = dim_out // num_heads self.scale = head_dim**-0.5 self.q_pool = q_pool self.qkv = nn.Linear(dim, dim_out * 3) self.proj = nn.Linear(dim_out, dim_out) def forward(self, x: torch.Tensor) -> torch.Tensor: B, H, W, _ = x.shape # qkv with shape (B, H * W, 3, nHead, C) qkv = self.qkv(x).reshape(B, H * W, 3, self.num_heads, -1) # q, k, v with shape (B, H * W, nheads, C) q, k, v = torch.unbind(qkv, 2) # Q pooling (for downsample at stage changes) if self.q_pool: q = do_pool(q.reshape(B, H, W, -1), self.q_pool) H, W = q.shape[1:3] # downsampled shape q = q.reshape(B, H * W, self.num_heads, -1) # Torch's SDPA expects [B, nheads, H*W, C] so we transpose x = F.scaled_dot_product_attention( q.transpose(1, 2), k.transpose(1, 2), v.transpose(1, 2), ) # Transpose back x = x.transpose(1, 2) x = x.reshape(B, H, W, -1) x = self.proj(x) return x class MultiScaleBlock(nn.Module): def __init__( self, dim: int, dim_out: int, num_heads: int, mlp_ratio: float = 4.0, drop_path: float = 0.0, norm_layer: Union[nn.Module, str] = "LayerNorm", q_stride: Tuple[int, int] = None, act_layer: nn.Module = nn.GELU, window_size: int = 0, ): super().__init__() if isinstance(norm_layer, str): norm_layer = partial(getattr(nn, norm_layer), eps=1e-6) self.dim = dim self.dim_out = dim_out self.norm1 = norm_layer(dim) self.window_size = window_size self.pool, self.q_stride = None, q_stride if self.q_stride: self.pool = nn.MaxPool2d( kernel_size=q_stride, stride=q_stride, ceil_mode=False ) self.attn = MultiScaleAttention( dim, dim_out, num_heads=num_heads, q_pool=self.pool, ) self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() self.norm2 = norm_layer(dim_out) self.mlp = MLP( dim_out, int(dim_out * mlp_ratio), dim_out, num_layers=2, activation=act_layer, ) if dim != dim_out: self.proj = nn.Linear(dim, dim_out) def forward(self, x: torch.Tensor) -> torch.Tensor: shortcut = x # B, H, W, C x = self.norm1(x) # Skip connection if self.dim != self.dim_out: shortcut = do_pool(self.proj(x), self.pool) # Window partition window_size = self.window_size if window_size > 0: H, W = x.shape[1], x.shape[2] x, pad_hw = window_partition(x, window_size) # Window Attention + Q Pooling (if stage change) x = self.attn(x) if self.q_stride: # Shapes have changed due to Q pooling window_size = self.window_size // self.q_stride[0] H, W = shortcut.shape[1:3] pad_h = (window_size - H % window_size) % window_size pad_w = (window_size - W % window_size) % window_size pad_hw = (H + pad_h, W + pad_w) # Reverse window partition if self.window_size > 0: x = window_unpartition(x, window_size, pad_hw, (H, W)) x = shortcut + self.drop_path(x) # MLP x = x + self.drop_path(self.mlp(self.norm2(x))) return x class Hiera(nn.Module): """ Reference: https://arxiv.org/abs/2306.00989 """ def __init__( self, embed_dim: int = 96, # initial embed dim num_heads: int = 1, # initial number of heads drop_path_rate: float = 0.0, # stochastic depth q_pool: int = 3, # number of q_pool stages q_stride: Tuple[int, int] = (2, 2), # downsample stride bet. stages stages: Tuple[int, ...] = (2, 3, 16, 3), # blocks per stage dim_mul: float = 2.0, # dim_mul factor at stage shift head_mul: float = 2.0, # head_mul factor at stage shift window_pos_embed_bkg_spatial_size: Tuple[int, int] = (14, 14), # window size per stage, when not using global att. window_spec: Tuple[int, ...] = ( 8, 4, 14, 7, ), # global attn in these blocks global_att_blocks: Tuple[int, ...] = ( 12, 16, 20, ), return_interm_layers=True, # return feats from every stage ): super().__init__() assert len(stages) == len(window_spec) self.window_spec = window_spec depth = sum(stages) self.q_stride = q_stride self.stage_ends = [sum(stages[:i]) - 1 for i in range(1, len(stages) + 1)] assert 0 <= q_pool <= len(self.stage_ends[:-1]) self.q_pool_blocks = [x + 1 for x in self.stage_ends[:-1]][:q_pool] self.return_interm_layers = return_interm_layers self.patch_embed = PatchEmbed( embed_dim=embed_dim, ) # Which blocks have global att? self.global_att_blocks = global_att_blocks # Windowed positional embedding (https://arxiv.org/abs/2311.05613) self.window_pos_embed_bkg_spatial_size = window_pos_embed_bkg_spatial_size self.pos_embed = nn.Parameter( torch.zeros(1, embed_dim, *self.window_pos_embed_bkg_spatial_size) ) self.pos_embed_window = nn.Parameter( torch.zeros(1, embed_dim, self.window_spec[0], self.window_spec[0]) ) dpr = [ x.item() for x in torch.linspace(0, drop_path_rate, depth) ] # stochastic depth decay rule cur_stage = 1 self.blocks = nn.ModuleList() for i in range(depth): dim_out = embed_dim # lags by a block, so first block of # next stage uses an initial window size # of previous stage and final window size of current stage window_size = self.window_spec[cur_stage - 1] if self.global_att_blocks is not None: window_size = 0 if i in self.global_att_blocks else window_size if i - 1 in self.stage_ends: dim_out = int(embed_dim * dim_mul) num_heads = int(num_heads * head_mul) cur_stage += 1 block = MultiScaleBlock( dim=embed_dim, dim_out=dim_out, num_heads=num_heads, drop_path=dpr[i], q_stride=self.q_stride if i in self.q_pool_blocks else None, window_size=window_size, ) embed_dim = dim_out self.blocks.append(block) self.channel_list = ( [self.blocks[i].dim_out for i in self.stage_ends[::-1]] if return_interm_layers else [self.blocks[-1].dim_out] ) def _get_pos_embed(self, hw: Tuple[int, int]) -> torch.Tensor: h, w = hw window_embed = self.pos_embed_window pos_embed = F.interpolate(self.pos_embed, size=(h, w), mode="bicubic") pos_embed = pos_embed + window_embed.tile( [x // y for x, y in zip(pos_embed.shape, window_embed.shape)] ) pos_embed = pos_embed.permute(0, 2, 3, 1) return pos_embed def forward(self, x: torch.Tensor) -> List[torch.Tensor]: x = self.patch_embed(x) # x: (B, H, W, C) # Add pos embed x = x + self._get_pos_embed(x.shape[1:3]) outputs = [] for i, blk in enumerate(self.blocks): x = blk(x) if (i == self.stage_ends[-1]) or ( i in self.stage_ends and self.return_interm_layers ): feats = x.permute(0, 3, 1, 2) outputs.append(feats) return outputs class TwoWayTransformer(nn.Module): def __init__( self, depth: int, embedding_dim: int, num_heads: int, mlp_dim: int, activation: Type[nn.Module] = nn.ReLU, attention_downsample_rate: int = 2, ) -> None: """ A transformer decoder that attends to an input image using queries whose positional embedding is supplied. Args: depth (int): number of layers in the transformer embedding_dim (int): the channel dimension for the input embeddings num_heads (int): the number of heads for multihead attention. Must divide embedding_dim mlp_dim (int): the channel dimension internal to the MLP block activation (nn.Module): the activation to use in the MLP block """ super().__init__() self.depth = depth self.embedding_dim = embedding_dim self.num_heads = num_heads self.mlp_dim = mlp_dim self.layers = nn.ModuleList() for i in range(depth): self.layers.append( TwoWayAttentionBlock( embedding_dim=embedding_dim, num_heads=num_heads, mlp_dim=mlp_dim, activation=activation, attention_downsample_rate=attention_downsample_rate, skip_first_layer_pe=(i == 0), ) ) self.final_attn_token_to_image = Attention( embedding_dim, num_heads, downsample_rate=attention_downsample_rate ) self.norm_final_attn = nn.LayerNorm(embedding_dim) def forward( self, image_embedding: Tensor, image_pe: Tensor, point_embedding: Tensor, ) -> Tuple[Tensor, Tensor]: """ Args: image_embedding (torch.Tensor): image to attend to. Should be shape B x embedding_dim x h x w for any h and w. image_pe (torch.Tensor): the positional encoding to add to the image. Must have the same shape as image_embedding. point_embedding (torch.Tensor): the embedding to add to the query points. Must have shape B x N_points x embedding_dim for any N_points. Returns: torch.Tensor: the processed point_embedding torch.Tensor: the processed image_embedding """ # BxCxHxW -> BxHWxC == B x N_image_tokens x C bs, c, h, w = image_embedding.shape image_embedding = image_embedding.flatten(2).permute(0, 2, 1) image_pe = image_pe.flatten(2).permute(0, 2, 1) # Prepare queries queries = point_embedding keys = image_embedding # Apply transformer blocks and final layernorm for layer in self.layers: queries, keys = layer( queries=queries, keys=keys, query_pe=point_embedding, key_pe=image_pe, ) # Apply the final attention layer from the points to the image q = queries + point_embedding k = keys + image_pe attn_out = self.final_attn_token_to_image(q=q, k=k, v=keys) queries = queries + attn_out queries = self.norm_final_attn(queries) return queries, keys class TwoWayAttentionBlock(nn.Module): def __init__( self, embedding_dim: int, num_heads: int, mlp_dim: int = 2048, activation: Type[nn.Module] = nn.ReLU, attention_downsample_rate: int = 2, skip_first_layer_pe: bool = False, ) -> None: """ A transformer block with four layers: (1) self-attention of sparse inputs, (2) cross attention of sparse inputs to dense inputs, (3) mlp block on sparse inputs, and (4) cross attention of dense inputs to sparse inputs. Arguments: embedding_dim (int): the channel dimension of the embeddings num_heads (int): the number of heads in the attention layers mlp_dim (int): the hidden dimension of the mlp block activation (nn.Module): the activation of the mlp block skip_first_layer_pe (bool): skip the PE on the first layer """ super().__init__() self.self_attn = Attention(embedding_dim, num_heads) self.norm1 = nn.LayerNorm(embedding_dim) self.cross_attn_token_to_image = Attention( embedding_dim, num_heads, downsample_rate=attention_downsample_rate ) self.norm2 = nn.LayerNorm(embedding_dim) self.mlp = MLP( embedding_dim, mlp_dim, embedding_dim, num_layers=2, activation=activation ) self.norm3 = nn.LayerNorm(embedding_dim) self.norm4 = nn.LayerNorm(embedding_dim) self.cross_attn_image_to_token = Attention( embedding_dim, num_heads, downsample_rate=attention_downsample_rate ) self.skip_first_layer_pe = skip_first_layer_pe def forward( self, queries: Tensor, keys: Tensor, query_pe: Tensor, key_pe: Tensor ) -> Tuple[Tensor, Tensor]: # Self attention block if self.skip_first_layer_pe: queries = self.self_attn(q=queries, k=queries, v=queries) else: q = queries + query_pe attn_out = self.self_attn(q=q, k=q, v=queries) queries = queries + attn_out queries = self.norm1(queries) # Cross attention block, tokens attending to image embedding q = queries + query_pe k = keys + key_pe attn_out = self.cross_attn_token_to_image(q=q, k=k, v=keys) queries = queries + attn_out queries = self.norm2(queries) # MLP block mlp_out = self.mlp(queries) queries = queries + mlp_out queries = self.norm3(queries) # Cross attention block, image embedding attending to tokens q = queries + query_pe k = keys + key_pe attn_out = self.cross_attn_image_to_token(q=k, k=q, v=queries) keys = keys + attn_out keys = self.norm4(keys) return queries, keys class Attention(nn.Module): """ An attention layer that allows for downscaling the size of the embedding after projection to queries, keys, and values. """ def __init__( self, embedding_dim: int, num_heads: int, downsample_rate: int = 1, dropout: float = 0.0, kv_in_dim: int = None, ) -> None: super().__init__() self.embedding_dim = embedding_dim self.kv_in_dim = kv_in_dim if kv_in_dim is not None else embedding_dim self.internal_dim = embedding_dim // downsample_rate self.num_heads = num_heads assert ( self.internal_dim % num_heads == 0 ), "num_heads must divide embedding_dim." self.q_proj = nn.Linear(embedding_dim, self.internal_dim) self.k_proj = nn.Linear(self.kv_in_dim, self.internal_dim) self.v_proj = nn.Linear(self.kv_in_dim, self.internal_dim) self.out_proj = nn.Linear(self.internal_dim, embedding_dim) self.dropout_p = dropout def _separate_heads(self, x: Tensor, num_heads: int) -> Tensor: b, n, c = x.shape x = x.reshape(b, n, num_heads, c // num_heads) return x.transpose(1, 2) # B x N_heads x N_tokens x C_per_head def _recombine_heads(self, x: Tensor) -> Tensor: b, n_heads, n_tokens, c_per_head = x.shape x = x.transpose(1, 2) return x.reshape(b, n_tokens, n_heads * c_per_head) # B x N_tokens x C def forward(self, q: Tensor, k: Tensor, v: Tensor) -> Tensor: # Input projections q = self.q_proj(q) k = self.k_proj(k) v = self.v_proj(v) # Separate into heads q = self._separate_heads(q, self.num_heads) k = self._separate_heads(k, self.num_heads) v = self._separate_heads(v, self.num_heads) dropout_p = self.dropout_p if self.training else 0.0 # Attention with torch.backends.cuda.sdp_kernel( enable_flash=USE_FLASH_ATTN, # if Flash attention kernel is off, then math kernel needs to be enabled enable_math=(OLD_GPU and dropout_p > 0.0) or MATH_KERNEL_ON, enable_mem_efficient=OLD_GPU, ): out = F.scaled_dot_product_attention(q, k, v, dropout_p=dropout_p) out = self._recombine_heads(out) out = self.out_proj(out) return out class RoPEAttention(Attention): """Attention with rotary position encoding.""" def __init__( self, *args, rope_theta=10000.0, # whether to repeat q rope to match k length # this is needed for cross-attention to memories rope_k_repeat=False, feat_sizes=(32, 32), # [w, h] for stride 16 feats at 512 resolution **kwargs, ): super().__init__(*args, **kwargs) self.compute_cis = partial( compute_axial_cis, dim=self.internal_dim // self.num_heads, theta=rope_theta ) freqs_cis = self.compute_cis(end_x=feat_sizes[0], end_y=feat_sizes[1]) self.freqs_cis = freqs_cis self.rope_k_repeat = rope_k_repeat def forward( self, q: Tensor, k: Tensor, v: Tensor, num_k_exclude_rope: int = 0 ) -> Tensor: # Input projections q = self.q_proj(q) k = self.k_proj(k) v = self.v_proj(v) # Separate into heads q = self._separate_heads(q, self.num_heads) k = self._separate_heads(k, self.num_heads) v = self._separate_heads(v, self.num_heads) # Apply rotary position encoding w = h = math.sqrt(q.shape[-2]) self.freqs_cis = self.freqs_cis.to(q.device) if self.freqs_cis.shape[0] != q.shape[-2]: self.freqs_cis = self.compute_cis(end_x=w, end_y=h).to(q.device) if q.shape[-2] != k.shape[-2]: assert self.rope_k_repeat num_k_rope = k.size(-2) - num_k_exclude_rope q, k[:, :, :num_k_rope] = apply_rotary_enc( q, k[:, :, :num_k_rope], freqs_cis=self.freqs_cis, repeat_freqs_k=self.rope_k_repeat, ) dropout_p = self.dropout_p if self.training else 0.0 # Attention with torch.backends.cuda.sdp_kernel( enable_flash=USE_FLASH_ATTN, # if Flash attention kernel is off, then math kernel needs to be enabled enable_math=(OLD_GPU and dropout_p > 0.0) or MATH_KERNEL_ON, enable_mem_efficient=OLD_GPU, ): out = F.scaled_dot_product_attention(q, k, v, dropout_p=dropout_p) out = self._recombine_heads(out) out = self.out_proj(out) return out class PromptEncoder(nn.Module): def __init__( self, embed_dim: int, image_embedding_size: Tuple[int, int], input_image_size: Tuple[int, int], mask_in_chans: int, activation: Type[nn.Module] = nn.GELU, ) -> None: """ Encodes prompts for input to SAM's mask decoder. Arguments: embed_dim (int): The prompts' embedding dimension image_embedding_size (tuple(int, int)): The spatial size of the image embedding, as (H, W). input_image_size (int): The padded size of the image as input to the image encoder, as (H, W). mask_in_chans (int): The number of hidden channels used for encoding input masks. activation (nn.Module): The activation to use when encoding input masks. """ super().__init__() self.embed_dim = embed_dim self.input_image_size = input_image_size self.image_embedding_size = image_embedding_size self.pe_layer = PositionEmbeddingRandom(embed_dim // 2) self.num_point_embeddings: int = 4 # pos/neg point + 2 box corners point_embeddings = [ nn.Embedding(1, embed_dim) for i in range(self.num_point_embeddings) ] self.point_embeddings = nn.ModuleList(point_embeddings) self.not_a_point_embed = nn.Embedding(1, embed_dim) self.mask_input_size = ( 4 * image_embedding_size[0], 4 * image_embedding_size[1], ) self.mask_downscaling = nn.Sequential( nn.Conv2d(1, mask_in_chans // 4, kernel_size=2, stride=2), LayerNorm2d(mask_in_chans // 4), activation(), nn.Conv2d(mask_in_chans // 4, mask_in_chans, kernel_size=2, stride=2), LayerNorm2d(mask_in_chans), activation(), nn.Conv2d(mask_in_chans, embed_dim, kernel_size=1), ) self.no_mask_embed = nn.Embedding(1, embed_dim) def get_dense_pe(self) -> torch.Tensor: """ Returns the positional encoding used to encode point prompts, applied to a dense set of points the shape of the image encoding. Returns: torch.Tensor: Positional encoding with shape 1x(embed_dim)x(embedding_h)x(embedding_w) """ return self.pe_layer(self.image_embedding_size).unsqueeze(0) def _embed_points( self, points: torch.Tensor, labels: torch.Tensor, pad: bool, ) -> torch.Tensor: """Embeds point prompts.""" points = points + 0.5 # Shift to center of pixel if pad: padding_point = torch.zeros((points.shape[0], 1, 2), device=points.device) padding_label = -torch.ones((labels.shape[0], 1), device=labels.device) points = torch.cat([points, padding_point], dim=1) labels = torch.cat([labels, padding_label], dim=1) point_embedding = self.pe_layer.forward_with_coords( points, self.input_image_size ) point_embedding[labels == -1] = 0.0 point_embedding[labels == -1] += self.not_a_point_embed.weight point_embedding[labels == 0] += self.point_embeddings[0].weight point_embedding[labels == 1] += self.point_embeddings[1].weight point_embedding[labels == 2] += self.point_embeddings[2].weight point_embedding[labels == 3] += self.point_embeddings[3].weight return point_embedding def _embed_boxes(self, boxes: torch.Tensor) -> torch.Tensor: """Embeds box prompts.""" boxes = boxes + 0.5 # Shift to center of pixel coords = boxes.reshape(-1, 2, 2) corner_embedding = self.pe_layer.forward_with_coords( coords, self.input_image_size ) corner_embedding[:, 0, :] += self.point_embeddings[2].weight corner_embedding[:, 1, :] += self.point_embeddings[3].weight return corner_embedding def _embed_masks(self, masks: torch.Tensor) -> torch.Tensor: """Embeds mask inputs.""" mask_embedding = self.mask_downscaling(masks) return mask_embedding def _get_batch_size( self, points: Optional[Tuple[torch.Tensor, torch.Tensor]], boxes: Optional[torch.Tensor], masks: Optional[torch.Tensor], ) -> int: """ Gets the batch size of the output given the batch size of the input prompts. """ if points is not None: return points[0].shape[0] elif boxes is not None: return boxes.shape[0] elif masks is not None: return masks.shape[0] else: return 1 def _get_device(self) -> torch.device: return self.point_embeddings[0].weight.device def forward( self, points: Optional[Tuple[torch.Tensor, torch.Tensor]], boxes: Optional[torch.Tensor], masks: Optional[torch.Tensor], ) -> Tuple[torch.Tensor, torch.Tensor]: """ Embeds different types of prompts, returning both sparse and dense embeddings. Arguments: points (tuple(torch.Tensor, torch.Tensor) or none): point coordinates and labels to embed. boxes (torch.Tensor or none): boxes to embed masks (torch.Tensor or none): masks to embed Returns: torch.Tensor: sparse embeddings for the points and boxes, with shape BxNx(embed_dim), where N is determined by the number of input points and boxes. torch.Tensor: dense embeddings for the masks, in the shape Bx(embed_dim)x(embed_H)x(embed_W) """ bs = self._get_batch_size(points, boxes, masks) sparse_embeddings = torch.empty( (bs, 0, self.embed_dim), device=self._get_device() ) if points is not None: coords, labels = points point_embeddings = self._embed_points(coords, labels, pad=(boxes is None)) sparse_embeddings = torch.cat([sparse_embeddings, point_embeddings], dim=1) if boxes is not None: box_embeddings = self._embed_boxes(boxes) sparse_embeddings = torch.cat([sparse_embeddings, box_embeddings], dim=1) if masks is not None: dense_embeddings = self._embed_masks(masks) else: dense_embeddings = self.no_mask_embed.weight.reshape(1, -1, 1, 1).expand( bs, -1, self.image_embedding_size[0], self.image_embedding_size[1] ) return sparse_embeddings, dense_embeddings class PositionEmbeddingSine(nn.Module): """ This is a more standard version of the position embedding, very similar to the one used by the Attention is all you need paper, generalized to work on images. """ def __init__( self, num_pos_feats, temperature: int = 10000, normalize: bool = True, scale: Optional[float] = None, ): super().__init__() assert num_pos_feats % 2 == 0, "Expecting even model width" self.num_pos_feats = num_pos_feats // 2 self.temperature = temperature self.normalize = normalize if scale is not None and normalize is False: raise ValueError("normalize should be True if scale is passed") if scale is None: scale = 2 * math.pi self.scale = scale self.cache = {} def _encode_xy(self, x, y): # The positions are expected to be normalized assert len(x) == len(y) and x.ndim == y.ndim == 1 x_embed = x * self.scale y_embed = y * self.scale dim_t = torch.arange(self.num_pos_feats, dtype=torch.float32, device=x.device) dim_t = self.temperature ** (2 * (dim_t // 2) / self.num_pos_feats) pos_x = x_embed[:, None] / dim_t pos_y = y_embed[:, None] / dim_t pos_x = torch.stack( (pos_x[:, 0::2].sin(), pos_x[:, 1::2].cos()), dim=2 ).flatten(1) pos_y = torch.stack( (pos_y[:, 0::2].sin(), pos_y[:, 1::2].cos()), dim=2 ).flatten(1) return pos_x, pos_y @torch.no_grad() def encode_boxes(self, x, y, w, h): pos_x, pos_y = self._encode_xy(x, y) pos = torch.cat((pos_y, pos_x, h[:, None], w[:, None]), dim=1) return pos encode = encode_boxes # Backwards compatibility @torch.no_grad() def encode_points(self, x, y, labels): (bx, nx), (by, ny), (bl, nl) = x.shape, y.shape, labels.shape assert bx == by and nx == ny and bx == bl and nx == nl pos_x, pos_y = self._encode_xy(x.flatten(), y.flatten()) pos_x, pos_y = pos_x.reshape(bx, nx, -1), pos_y.reshape(by, ny, -1) pos = torch.cat((pos_y, pos_x, labels[:, :, None]), dim=2) return pos @torch.no_grad() def forward(self, x: torch.Tensor): cache_key = (x.shape[-2], x.shape[-1]) if cache_key in self.cache: return self.cache[cache_key][None].repeat(x.shape[0], 1, 1, 1) y_embed = ( torch.arange(1, x.shape[-2] + 1, dtype=torch.float32, device=x.device) .view(1, -1, 1) .repeat(x.shape[0], 1, x.shape[-1]) ) x_embed = ( torch.arange(1, x.shape[-1] + 1, dtype=torch.float32, device=x.device) .view(1, 1, -1) .repeat(x.shape[0], x.shape[-2], 1) ) if self.normalize: eps = 1e-6 y_embed = y_embed / (y_embed[:, -1:, :] + eps) * self.scale x_embed = x_embed / (x_embed[:, :, -1:] + eps) * self.scale dim_t = torch.arange(self.num_pos_feats, dtype=torch.float32, device=x.device) dim_t = self.temperature ** (2 * (dim_t // 2) / self.num_pos_feats) pos_x = x_embed[:, :, :, None] / dim_t pos_y = y_embed[:, :, :, None] / dim_t pos_x = torch.stack( (pos_x[:, :, :, 0::2].sin(), pos_x[:, :, :, 1::2].cos()), dim=4 ).flatten(3) pos_y = torch.stack( (pos_y[:, :, :, 0::2].sin(), pos_y[:, :, :, 1::2].cos()), dim=4 ).flatten(3) pos = torch.cat((pos_y, pos_x), dim=3).permute(0, 3, 1, 2) self.cache[cache_key] = pos[0] return pos class PositionEmbeddingRandom(nn.Module): """ Positional encoding using random spatial frequencies. """ def __init__(self, num_pos_feats: int = 64, scale: Optional[float] = None) -> None: super().__init__() if scale is None or scale <= 0.0: scale = 1.0 self.register_buffer( "positional_encoding_gaussian_matrix", scale * torch.randn((2, num_pos_feats)), ) self.first = True def _pe_encoding(self, coords: torch.Tensor) -> torch.Tensor: """Positionally encode points that are normalized to [0,1].""" # assuming coords are in [0, 1]^2 square and have d_1 x ... x d_n x 2 shape coords = 2 * coords - 1 coords = coords.to(self.positional_encoding_gaussian_matrix.dtype) if self.first: self.positional_encoding_gaussian_matrix = self.positional_encoding_gaussian_matrix.to(coords.device) self.first = False coords = coords @ self.positional_encoding_gaussian_matrix coords = 2 * np.pi * coords # outputs d_1 x ... x d_n x C shape return torch.cat([torch.sin(coords), torch.cos(coords)], dim=-1) def forward(self, size: Tuple[int, int]) -> torch.Tensor: """Generate positional encoding for a grid of the specified size.""" h, w = size device: Any = self.positional_encoding_gaussian_matrix.device grid = torch.ones((h, w), device=device, dtype=torch.float32) y_embed = grid.cumsum(dim=0) - 0.5 x_embed = grid.cumsum(dim=1) - 0.5 y_embed = y_embed / h x_embed = x_embed / w pe = self._pe_encoding(torch.stack([x_embed, y_embed], dim=-1)) return pe.permute(2, 0, 1) # C x H x W def forward_with_coords( self, coords_input: torch.Tensor, image_size: Tuple[int, int] ) -> torch.Tensor: """Positionally encode points that are not normalized to [0,1].""" coords = coords_input.clone() coords[:, :, 0] = coords[:, :, 0] / image_size[1] coords[:, :, 1] = coords[:, :, 1] / image_size[0] return self._pe_encoding(coords.to(torch.float)) # B x N x C # Rotary Positional Encoding, adapted from: # 1. https://github.com/meta-llama/codellama/blob/main/llama/model.py # 2. https://github.com/naver-ai/rope-vit # 3. https://github.com/lucidrains/rotary-embedding-torch def init_t_xy(end_x: int, end_y: int): t = torch.arange(end_x * end_y, dtype=torch.float32) t_x = (t % end_x).float() t_y = torch.div(t, end_x, rounding_mode="floor").float() return t_x, t_y def compute_axial_cis(dim: int, end_x: int, end_y: int, theta: float = 10000.0): freqs_x = 1.0 / (theta ** (torch.arange(0, dim, 4)[: (dim // 4)].float() / dim)) freqs_y = 1.0 / (theta ** (torch.arange(0, dim, 4)[: (dim // 4)].float() / dim)) t_x, t_y = init_t_xy(end_x, end_y) freqs_x = torch.outer(t_x, freqs_x) freqs_y = torch.outer(t_y, freqs_y) freqs_cis_x = torch.polar(torch.ones_like(freqs_x), freqs_x) freqs_cis_y = torch.polar(torch.ones_like(freqs_y), freqs_y) return torch.cat([freqs_cis_x, freqs_cis_y], dim=-1) def reshape_for_broadcast(freqs_cis: torch.Tensor, x: torch.Tensor): ndim = x.ndim assert 0 <= 1 < ndim assert freqs_cis.shape == (x.shape[-2], x.shape[-1]) shape = [d if i >= ndim - 2 else 1 for i, d in enumerate(x.shape)] return freqs_cis.view(*shape) def apply_rotary_enc( xq: torch.Tensor, xk: torch.Tensor, freqs_cis: torch.Tensor, repeat_freqs_k: bool = False, ): xq_ = torch.view_as_complex(xq.float().reshape(*xq.shape[:-1], -1, 2)) xk_ = ( torch.view_as_complex(xk.float().reshape(*xk.shape[:-1], -1, 2)) if xk.shape[-2] != 0 else None ) freqs_cis = reshape_for_broadcast(freqs_cis, xq_) xq_out = torch.view_as_real(xq_ * freqs_cis).flatten(3) if xk_ is None: # no keys to rotate, due to dropout return xq_out.type_as(xq).to(xq.device), xk # repeat freqs along seq_len dim to match k seq_len if repeat_freqs_k: r = xk_.shape[-2] // xq_.shape[-2] freqs_cis = freqs_cis.repeat(*([1] * (freqs_cis.ndim - 2)), r, 1) xk_out = torch.view_as_real(xk_ * freqs_cis).flatten(3) return xq_out.type_as(xq).to(xq.device), xk_out.type_as(xk).to(xk.device) class MaskDecoder(nn.Module): def __init__( self, *, transformer_dim: int, transformer: nn.Module, num_multimask_outputs: int = 3, activation: Type[nn.Module] = nn.GELU, iou_head_depth: int = 3, iou_head_hidden_dim: int = 256, use_high_res_features: bool = False, iou_prediction_use_sigmoid=False, dynamic_multimask_via_stability=False, dynamic_multimask_stability_delta=0.05, dynamic_multimask_stability_thresh=0.98, pred_obj_scores: bool = False, pred_obj_scores_mlp: bool = False, use_multimask_token_for_obj_ptr: bool = False, ) -> None: """ Predicts masks given an image and prompt embeddings, using a transformer architecture. Arguments: transformer_dim (int): the channel dimension of the transformer transformer (nn.Module): the transformer used to predict masks num_multimask_outputs (int): the number of masks to predict when disambiguating masks activation (nn.Module): the type of activation to use when upscaling masks iou_head_depth (int): the depth of the MLP used to predict mask quality iou_head_hidden_dim (int): the hidden dimension of the MLP used to predict mask quality """ super().__init__() self.transformer_dim = transformer_dim self.transformer = transformer self.num_multimask_outputs = num_multimask_outputs self.iou_token = nn.Embedding(1, transformer_dim) self.num_mask_tokens = num_multimask_outputs + 1 self.mask_tokens = nn.Embedding(self.num_mask_tokens, transformer_dim) self.pred_obj_scores = pred_obj_scores if self.pred_obj_scores: self.obj_score_token = nn.Embedding(1, transformer_dim) self.use_multimask_token_for_obj_ptr = use_multimask_token_for_obj_ptr self.output_upscaling = nn.Sequential( nn.ConvTranspose2d( transformer_dim, transformer_dim // 4, kernel_size=2, stride=2 ), LayerNorm2d(transformer_dim // 4), activation(), nn.ConvTranspose2d( transformer_dim // 4, transformer_dim // 8, kernel_size=2, stride=2 ), activation(), ) self.use_high_res_features = use_high_res_features if use_high_res_features: self.conv_s0 = nn.Conv2d( transformer_dim, transformer_dim // 8, kernel_size=1, stride=1 ) self.conv_s1 = nn.Conv2d( transformer_dim, transformer_dim // 4, kernel_size=1, stride=1 ) self.output_hypernetworks_mlps = nn.ModuleList( [ MLP(transformer_dim, transformer_dim, transformer_dim // 8, 3) for i in range(self.num_mask_tokens) ] ) self.iou_prediction_head = MLP( transformer_dim, iou_head_hidden_dim, self.num_mask_tokens, iou_head_depth, sigmoid_output=iou_prediction_use_sigmoid, ) if self.pred_obj_scores: self.pred_obj_score_head = nn.Linear(transformer_dim, 1) if pred_obj_scores_mlp: self.pred_obj_score_head = MLP(transformer_dim, transformer_dim, 1, 3) # When outputting a single mask, optionally we can dynamically fall back to the best # multimask output token if the single mask output token gives low stability scores. self.dynamic_multimask_via_stability = dynamic_multimask_via_stability self.dynamic_multimask_stability_delta = dynamic_multimask_stability_delta self.dynamic_multimask_stability_thresh = dynamic_multimask_stability_thresh def forward( self, image_embeddings: torch.Tensor, image_pe: torch.Tensor, sparse_prompt_embeddings: torch.Tensor, dense_prompt_embeddings: torch.Tensor, multimask_output: bool, repeat_image: bool, high_res_features: Optional[List[torch.Tensor]] = None, ) -> Tuple[torch.Tensor, torch.Tensor]: """ Predict masks given image and prompt embeddings. Arguments: image_embeddings (torch.Tensor): the embeddings from the image encoder image_pe (torch.Tensor): positional encoding with the shape of image_embeddings sparse_prompt_embeddings (torch.Tensor): the embeddings of the points and boxes dense_prompt_embeddings (torch.Tensor): the embeddings of the mask inputs multimask_output (bool): Whether to return multiple masks or a single mask. Returns: torch.Tensor: batched predicted masks torch.Tensor: batched predictions of mask quality torch.Tensor: batched SAM token for mask output """ masks, iou_pred, mask_tokens_out, object_score_logits = self.predict_masks( image_embeddings=image_embeddings, image_pe=image_pe, sparse_prompt_embeddings=sparse_prompt_embeddings, dense_prompt_embeddings=dense_prompt_embeddings, repeat_image=repeat_image, high_res_features=high_res_features, ) # Select the correct mask or masks for output if multimask_output: masks = masks[:, 1:, :, :] iou_pred = iou_pred[:, 1:] elif self.dynamic_multimask_via_stability and not self.training: masks, iou_pred = self._dynamic_multimask_via_stability(masks, iou_pred) else: masks = masks[:, 0:1, :, :] iou_pred = iou_pred[:, 0:1] if multimask_output and self.use_multimask_token_for_obj_ptr: sam_tokens_out = mask_tokens_out[:, 1:] # [b, 3, c] shape else: # Take the mask output token. Here we *always* use the token for single mask output. # At test time, even if we track after 1-click (and using multimask_output=True), # we still take the single mask token here. The rationale is that we always track # after multiple clicks during training, so the past tokens seen during training # are always the single mask token (and we'll let it be the object-memory token). sam_tokens_out = mask_tokens_out[:, 0:1] # [b, 1, c] shape # Prepare output return masks, iou_pred, sam_tokens_out, object_score_logits def predict_masks( self, image_embeddings: torch.Tensor, image_pe: torch.Tensor, sparse_prompt_embeddings: torch.Tensor, dense_prompt_embeddings: torch.Tensor, repeat_image: bool, high_res_features: Optional[List[torch.Tensor]] = None, ) -> Tuple[torch.Tensor, torch.Tensor]: """Predicts masks. See 'forward' for more details.""" # Concatenate output tokens s = 0 if self.pred_obj_scores: output_tokens = torch.cat( [ self.obj_score_token.weight, self.iou_token.weight, self.mask_tokens.weight, ], dim=0, ) s = 1 else: output_tokens = torch.cat( [self.iou_token.weight, self.mask_tokens.weight], dim=0 ) output_tokens = output_tokens.unsqueeze(0).expand( sparse_prompt_embeddings.size(0), -1, -1 ) tokens = torch.cat((output_tokens, sparse_prompt_embeddings), dim=1) # Expand per-image data in batch direction to be per-mask if repeat_image: src = torch.repeat_interleave(image_embeddings, tokens.shape[0], dim=0) else: assert image_embeddings.shape[0] == tokens.shape[0] src = image_embeddings src = src + dense_prompt_embeddings assert ( image_pe.size(0) == 1 ), "image_pe should have size 1 in batch dim (from `get_dense_pe()`)" pos_src = torch.repeat_interleave(image_pe, tokens.shape[0], dim=0) b, c, h, w = src.shape # Run the transformer # print('src: ', src.dtype, 'pos_src:', pos_src.dtype, 'tokens:', tokens.dtype) _dtype = pos_src.dtype src = src.to(_dtype) tokens = tokens.to(_dtype) hs, src = self.transformer(src, pos_src, tokens) iou_token_out = hs[:, s, :] mask_tokens_out = hs[:, s + 1 : (s + 1 + self.num_mask_tokens), :] # Upscale mask embeddings and predict masks using the mask tokens src = src.transpose(1, 2).view(b, c, h, w) if not self.use_high_res_features: upscaled_embedding = self.output_upscaling(src) else: dc1, ln1, act1, dc2, act2 = self.output_upscaling feat_s0, feat_s1 = high_res_features upscaled_embedding = act1(ln1(dc1(src) + feat_s1)) upscaled_embedding = act2(dc2(upscaled_embedding) + feat_s0) hyper_in_list: List[torch.Tensor] = [] for i in range(self.num_mask_tokens): hyper_in_list.append( self.output_hypernetworks_mlps[i](mask_tokens_out[:, i, :]) ) hyper_in = torch.stack(hyper_in_list, dim=1) b, c, h, w = upscaled_embedding.shape masks = (hyper_in @ upscaled_embedding.view(b, c, h * w)).view(b, -1, h, w) # Generate mask quality predictions iou_pred = self.iou_prediction_head(iou_token_out) if self.pred_obj_scores: assert s == 1 object_score_logits = self.pred_obj_score_head(hs[:, 0, :]) else: # Obj scores logits - default to 10.0, i.e. assuming the object is present, sigmoid(10)=1 object_score_logits = 10.0 * iou_pred.new_ones(iou_pred.shape[0], 1) return masks, iou_pred, mask_tokens_out, object_score_logits def _get_stability_scores(self, mask_logits): """ Compute stability scores of the mask logits based on the IoU between upper and lower thresholds, similar to https://github.com/fairinternal/onevision/pull/568. """ mask_logits = mask_logits.flatten(-2) stability_delta = self.dynamic_multimask_stability_delta area_i = torch.sum(mask_logits > stability_delta, dim=-1).float() area_u = torch.sum(mask_logits > -stability_delta, dim=-1).float() stability_scores = torch.where(area_u > 0, area_i / area_u, 1.0) return stability_scores def _dynamic_multimask_via_stability(self, all_mask_logits, all_iou_scores): """ When outputting a single mask, if the stability score from the current single-mask output (based on output token 0) falls below a threshold, we instead select from multi-mask outputs (based on output token 1~3) the mask with the highest predicted IoU score. This is intended to ensure a valid mask for both clicking and tracking. """ # The best mask from multimask output tokens (1~3) multimask_logits = all_mask_logits[:, 1:, :, :] multimask_iou_scores = all_iou_scores[:, 1:] best_scores_inds = torch.argmax(multimask_iou_scores, dim=-1) batch_inds = torch.arange( multimask_iou_scores.size(0), device=all_iou_scores.device ) best_multimask_logits = multimask_logits[batch_inds, best_scores_inds] best_multimask_logits = best_multimask_logits.unsqueeze(1) best_multimask_iou_scores = multimask_iou_scores[batch_inds, best_scores_inds] best_multimask_iou_scores = best_multimask_iou_scores.unsqueeze(1) # The mask from singlemask output token 0 and its stability score singlemask_logits = all_mask_logits[:, 0:1, :, :] singlemask_iou_scores = all_iou_scores[:, 0:1] stability_scores = self._get_stability_scores(singlemask_logits) is_stable = stability_scores >= self.dynamic_multimask_stability_thresh # Dynamically fall back to best multimask output upon low stability scores. mask_logits_out = torch.where( is_stable[..., None, None].expand_as(singlemask_logits), singlemask_logits, best_multimask_logits, ) iou_scores_out = torch.where( is_stable.expand_as(singlemask_iou_scores), singlemask_iou_scores, best_multimask_iou_scores, ) return mask_logits_out, iou_scores_out def select_closest_cond_frames(frame_idx, cond_frame_outputs, max_cond_frame_num): """ Select up to `max_cond_frame_num` conditioning frames from `cond_frame_outputs` that are temporally closest to the current frame at `frame_idx`. Here, we take - a) the closest conditioning frame before `frame_idx` (if any); - b) the closest conditioning frame after `frame_idx` (if any); - c) any other temporally closest conditioning frames until reaching a total of `max_cond_frame_num` conditioning frames. Outputs: - selected_outputs: selected items (keys & values) from `cond_frame_outputs`. - unselected_outputs: items (keys & values) not selected in `cond_frame_outputs`. """ if max_cond_frame_num == -1 or len(cond_frame_outputs) <= max_cond_frame_num: selected_outputs = cond_frame_outputs unselected_outputs = {} else: assert max_cond_frame_num >= 2, "we should allow using 2+ conditioning frames" selected_outputs = {} # the closest conditioning frame before `frame_idx` (if any) idx_before = max((t for t in cond_frame_outputs if t < frame_idx), default=None) if idx_before is not None: selected_outputs[idx_before] = cond_frame_outputs[idx_before] # the closest conditioning frame after `frame_idx` (if any) idx_after = min((t for t in cond_frame_outputs if t >= frame_idx), default=None) if idx_after is not None: selected_outputs[idx_after] = cond_frame_outputs[idx_after] # add other temporally closest conditioning frames until reaching a total # of `max_cond_frame_num` conditioning frames. num_remain = max_cond_frame_num - len(selected_outputs) inds_remain = sorted( (t for t in cond_frame_outputs if t not in selected_outputs), key=lambda x: abs(x - frame_idx), )[:num_remain] selected_outputs.update((t, cond_frame_outputs[t]) for t in inds_remain) unselected_outputs = { t: v for t, v in cond_frame_outputs.items() if t not in selected_outputs } return selected_outputs, unselected_outputs def get_1d_sine_pe(pos_inds, dim, temperature=10000): """ Get 1D sine positional embedding as in the original Transformer paper. """ pe_dim = dim // 2 dim_t = torch.arange(pe_dim, dtype=torch.float32, device=pos_inds.device) dim_t = temperature ** (2 * (dim_t // 2) / pe_dim) pos_embed = pos_inds.unsqueeze(-1) / dim_t pos_embed = torch.cat([pos_embed.sin(), pos_embed.cos()], dim=-1) return pos_embed def get_activation_fn(activation): """Return an activation function given a string""" if activation == "relu": return F.relu if activation == "gelu": return F.gelu if activation == "glu": return F.glu raise RuntimeError(f"activation should be relu/gelu, not {activation}.") def get_clones(module, N): return nn.ModuleList([copy.deepcopy(module) for i in range(N)]) class DropPath(nn.Module): # adapted from https://github.com/huggingface/pytorch-image-models/blob/main/timm/layers/drop.py def __init__(self, drop_prob=0.0, scale_by_keep=True): super(DropPath, self).__init__() self.drop_prob = drop_prob self.scale_by_keep = scale_by_keep def forward(self, x): if self.drop_prob == 0.0 or not self.training: return x keep_prob = 1 - self.drop_prob shape = (x.shape[0],) + (1,) * (x.ndim - 1) random_tensor = x.new_empty(shape).bernoulli_(keep_prob) if keep_prob > 0.0 and self.scale_by_keep: random_tensor.div_(keep_prob) return x * random_tensor # Lightly adapted from # https://github.com/facebookresearch/MaskFormer/blob/main/mask_former/modeling/transformer/transformer_predictor.py # noqa class MLP(nn.Module): def __init__( self, input_dim: int, hidden_dim: int, output_dim: int, num_layers: int, activation: nn.Module = nn.ReLU, sigmoid_output: bool = False, ) -> None: super().__init__() self.num_layers = num_layers h = [hidden_dim] * (num_layers - 1) self.layers = nn.ModuleList( nn.Linear(n, k) for n, k in zip([input_dim] + h, h + [output_dim]) ) self.sigmoid_output = sigmoid_output self.act = activation() def forward(self, x): for i, layer in enumerate(self.layers): x = self.act(layer(x)) if i < self.num_layers - 1 else layer(x) if self.sigmoid_output: x = F.sigmoid(x) return x # From https://github.com/facebookresearch/detectron2/blob/main/detectron2/layers/batch_norm.py # noqa # Itself from https://github.com/facebookresearch/ConvNeXt/blob/d1fa8f6fef0a165b27399986cc2bdacc92777e40/models/convnext.py#L119 # noqa class LayerNorm2d(nn.Module): def __init__(self, num_channels: int, eps: float = 1e-6) -> None: super().__init__() self.weight = nn.Parameter(torch.ones(num_channels)) self.bias = nn.Parameter(torch.zeros(num_channels)) self.eps = eps def forward(self, x: torch.Tensor) -> torch.Tensor: u = x.mean(1, keepdim=True) s = (x - u).pow(2).mean(1, keepdim=True) x = (x - u) / torch.sqrt(s + self.eps) x = self.weight[:, None, None] * x + self.bias[:, None, None] return x class SAM2Base_(torch.nn.Module): def __init__( self, image_encoder, memory_attention, memory_encoder, num_maskmem=7, # default 1 input frame + 6 previous frames image_size=512, backbone_stride=16, # stride of the image backbone output sigmoid_scale_for_mem_enc=1.0, # scale factor for mask sigmoid prob sigmoid_bias_for_mem_enc=0.0, # bias factor for mask sigmoid prob # During evaluation, whether to binarize the sigmoid mask logits on interacted frames with clicks binarize_mask_from_pts_for_mem_enc=False, use_mask_input_as_output_without_sam=False, # on frames with mask input, whether to directly output the input mask without using a SAM prompt encoder + mask decoder # The maximum number of conditioning frames to participate in the memory attention (-1 means no limit; if there are more conditioning frames than this limit, # we only cross-attend to the temporally closest `max_cond_frames_in_attn` conditioning frames in the encoder when tracking each frame). This gives the model # a temporal locality when handling a large number of annotated frames (since closer frames should be more important) and also avoids GPU OOM. max_cond_frames_in_attn=-1, # on the first frame, whether to directly add the no-memory embedding to the image feature # (instead of using the transformer encoder) directly_add_no_mem_embed=False, # whether to use high-resolution feature maps in the SAM mask decoder use_high_res_features_in_sam=False, # whether to output multiple (3) masks for the first click on initial conditioning frames multimask_output_in_sam=False, # the minimum and maximum number of clicks to use multimask_output_in_sam (only relevant when `multimask_output_in_sam=True`; # default is 1 for both, meaning that only the first click gives multimask output; also note that a box counts as two points) multimask_min_pt_num=1, multimask_max_pt_num=1, # whether to also use multimask output for tracking (not just for the first click on initial conditioning frames; only relevant when `multimask_output_in_sam=True`) multimask_output_for_tracking=False, # Whether to use multimask tokens for obj ptr; Only relevant when both # use_obj_ptrs_in_encoder=True and multimask_output_for_tracking=True use_multimask_token_for_obj_ptr: bool = False, # whether to use sigmoid to restrict ious prediction to [0-1] iou_prediction_use_sigmoid=False, # The memory bank's temporal stride during evaluation (i.e. the `r` parameter in XMem and Cutie; XMem and Cutie use r=5). # For r>1, the (self.num_maskmem - 1) non-conditioning memory frames consist of # (self.num_maskmem - 2) nearest frames from every r-th frames, plus the last frame. memory_temporal_stride_for_eval=1, # if `add_all_frames_to_correct_as_cond` is True, we also append to the conditioning frame list any frame that receives a later correction click # if `add_all_frames_to_correct_as_cond` is False, we conditioning frame list to only use those initial conditioning frames add_all_frames_to_correct_as_cond=False, # whether to apply non-overlapping constraints on the object masks in the memory encoder during evaluation (to avoid/alleviate superposing masks) non_overlap_masks_for_mem_enc=False, # whether to cross-attend to object pointers from other frames (based on SAM output tokens) in the encoder use_obj_ptrs_in_encoder=False, # the maximum number of object pointers from other frames in encoder cross attention (only relevant when `use_obj_ptrs_in_encoder=True`) max_obj_ptrs_in_encoder=16, # whether to add temporal positional encoding to the object pointers in the encoder (only relevant when `use_obj_ptrs_in_encoder=True`) add_tpos_enc_to_obj_ptrs=True, # whether to add an extra linear projection layer for the temporal positional encoding in the object pointers to avoid potential interference # with spatial positional encoding (only relevant when both `use_obj_ptrs_in_encoder=True` and `add_tpos_enc_to_obj_ptrs=True`) proj_tpos_enc_in_obj_ptrs=False, # whether to only attend to object pointers in the past (before the current frame) in the encoder during evaluation # (only relevant when `use_obj_ptrs_in_encoder=True`; this might avoid pointer information too far in the future to distract the initial tracking) only_obj_ptrs_in_the_past_for_eval=False, # Whether to predict if there is an object in the frame pred_obj_scores: bool = False, # Whether to use an MLP to predict object scores pred_obj_scores_mlp: bool = False, # Only relevant if pred_obj_scores=True and use_obj_ptrs_in_encoder=True; # Whether to have a fixed no obj pointer when there is no object present # or to use it as an additive embedding with obj_ptr produced by decoder fixed_no_obj_ptr: bool = False, # Soft no object, i.e. mix in no_obj_ptr softly, # hope to make recovery easier if there is a mistake and mitigate accumulation of errors soft_no_obj_ptr: bool = False, use_mlp_for_obj_ptr_proj: bool = False, # extra arguments used to construct the SAM mask decoder; if not None, it should be a dict of kwargs to be passed into `MaskDecoder` class. sam_mask_decoder_extra_args=None, compile_image_encoder: bool = False, ): super().__init__() # Part 1: the image backbone self.image_encoder = image_encoder # Use level 0, 1, 2 for high-res setting, or just level 2 for the default setting self.use_high_res_features_in_sam = use_high_res_features_in_sam self.num_feature_levels = 3 if use_high_res_features_in_sam else 1 self.use_obj_ptrs_in_encoder = use_obj_ptrs_in_encoder self.max_obj_ptrs_in_encoder = max_obj_ptrs_in_encoder if use_obj_ptrs_in_encoder: # A conv layer to downsample the mask prompt to stride 4 (the same stride as # low-res SAM mask logits) and to change its scales from 0~1 to SAM logit scale, # so that it can be fed into the SAM mask decoder to generate a pointer. self.mask_downsample = torch.nn.Conv2d(1, 1, kernel_size=4, stride=4) self.add_tpos_enc_to_obj_ptrs = add_tpos_enc_to_obj_ptrs if proj_tpos_enc_in_obj_ptrs: assert add_tpos_enc_to_obj_ptrs # these options need to be used together self.proj_tpos_enc_in_obj_ptrs = proj_tpos_enc_in_obj_ptrs self.only_obj_ptrs_in_the_past_for_eval = only_obj_ptrs_in_the_past_for_eval # Part 2: memory attention to condition current frame's visual features # with memories (and obj ptrs) from past frames self.memory_attention = memory_attention self.hidden_dim = memory_attention.d_model # Part 3: memory encoder for the previous frame's outputs self.memory_encoder = memory_encoder self.mem_dim = self.hidden_dim if hasattr(self.memory_encoder, "out_proj") and hasattr( self.memory_encoder.out_proj, "weight" ): # if there is compression of memories along channel dim self.mem_dim = self.memory_encoder.out_proj.weight.shape[0] self.num_maskmem = num_maskmem # Number of memories accessible # Temporal encoding of the memories self.maskmem_tpos_enc = torch.nn.Parameter( torch.zeros(num_maskmem, 1, 1, self.mem_dim) ) trunc_normal_(self.maskmem_tpos_enc, std=0.02) # a single token to indicate no memory embedding from previous frames self.no_mem_embed = torch.nn.Parameter(torch.zeros(1, 1, self.hidden_dim)) self.no_mem_pos_enc = torch.nn.Parameter(torch.zeros(1, 1, self.hidden_dim)) trunc_normal_(self.no_mem_embed, std=0.02) trunc_normal_(self.no_mem_pos_enc, std=0.02) self.directly_add_no_mem_embed = directly_add_no_mem_embed # Apply sigmoid to the output raw mask logits (to turn them from # range (-inf, +inf) to range (0, 1)) before feeding them into the memory encoder self.sigmoid_scale_for_mem_enc = sigmoid_scale_for_mem_enc self.sigmoid_bias_for_mem_enc = sigmoid_bias_for_mem_enc self.binarize_mask_from_pts_for_mem_enc = binarize_mask_from_pts_for_mem_enc self.non_overlap_masks_for_mem_enc = non_overlap_masks_for_mem_enc self.memory_temporal_stride_for_eval = memory_temporal_stride_for_eval # On frames with mask input, whether to directly output the input mask without # using a SAM prompt encoder + mask decoder self.use_mask_input_as_output_without_sam = use_mask_input_as_output_without_sam self.multimask_output_in_sam = multimask_output_in_sam self.multimask_min_pt_num = multimask_min_pt_num self.multimask_max_pt_num = multimask_max_pt_num self.multimask_output_for_tracking = multimask_output_for_tracking self.use_multimask_token_for_obj_ptr = use_multimask_token_for_obj_ptr self.iou_prediction_use_sigmoid = iou_prediction_use_sigmoid # Part 4: SAM-style prompt encoder (for both mask and point inputs) # and SAM-style mask decoder for the final mask output self.image_size = image_size self.backbone_stride = backbone_stride self.sam_mask_decoder_extra_args = sam_mask_decoder_extra_args self.pred_obj_scores = pred_obj_scores self.pred_obj_scores_mlp = pred_obj_scores_mlp self.fixed_no_obj_ptr = fixed_no_obj_ptr self.soft_no_obj_ptr = soft_no_obj_ptr if self.fixed_no_obj_ptr: assert self.pred_obj_scores assert self.use_obj_ptrs_in_encoder if self.pred_obj_scores and self.use_obj_ptrs_in_encoder: self.no_obj_ptr = torch.nn.Parameter(torch.zeros(1, self.hidden_dim)) trunc_normal_(self.no_obj_ptr, std=0.02) self.use_mlp_for_obj_ptr_proj = use_mlp_for_obj_ptr_proj self._build_sam_heads() self.add_all_frames_to_correct_as_cond = add_all_frames_to_correct_as_cond self.max_cond_frames_in_attn = max_cond_frames_in_attn # Model compilation if compile_image_encoder: # Compile the forward function (not the full module) to allow loading checkpoints. print( "Image encoder compilation is enabled. First forward pass will be slow." ) self.image_encoder.forward = torch.compile( self.image_encoder.forward, mode="max-autotune", fullgraph=True, dynamic=False, ) @property def device(self): return next(self.parameters()).device def forward(self, *args, **kwargs): raise NotImplementedError( "Please use the corresponding methods in SAM2VideoPredictor for inference." "See notebooks/video_predictor_example.ipynb for an example." ) def _build_sam_heads(self): """Build SAM-style prompt encoder and mask decoder.""" self.sam_prompt_embed_dim = self.hidden_dim self.sam_image_embedding_size = self.image_size // self.backbone_stride # build PromptEncoder and MaskDecoder from SAM # (their hyperparameters like `mask_in_chans=16` are from SAM code) self.sam_prompt_encoder = PromptEncoder( embed_dim=self.sam_prompt_embed_dim, image_embedding_size=( self.sam_image_embedding_size, self.sam_image_embedding_size, ), input_image_size=(self.image_size, self.image_size), mask_in_chans=16, ) self.sam_mask_decoder = MaskDecoder( num_multimask_outputs=3, transformer=TwoWayTransformer( depth=2, embedding_dim=self.sam_prompt_embed_dim, mlp_dim=2048, num_heads=8, ), transformer_dim=self.sam_prompt_embed_dim, iou_head_depth=3, iou_head_hidden_dim=256, use_high_res_features=self.use_high_res_features_in_sam, iou_prediction_use_sigmoid=self.iou_prediction_use_sigmoid, pred_obj_scores=self.pred_obj_scores, pred_obj_scores_mlp=self.pred_obj_scores_mlp, use_multimask_token_for_obj_ptr=self.use_multimask_token_for_obj_ptr, **(self.sam_mask_decoder_extra_args or {}), ) if self.use_obj_ptrs_in_encoder: # a linear projection on SAM output tokens to turn them into object pointers self.obj_ptr_proj = torch.nn.Linear(self.hidden_dim, self.hidden_dim) if self.use_mlp_for_obj_ptr_proj: self.obj_ptr_proj = MLP( self.hidden_dim, self.hidden_dim, self.hidden_dim, 3 ) else: self.obj_ptr_proj = torch.nn.Identity() if self.proj_tpos_enc_in_obj_ptrs: # a linear projection on temporal positional encoding in object pointers to # avoid potential interference with spatial positional encoding self.obj_ptr_tpos_proj = torch.nn.Linear(self.hidden_dim, self.mem_dim) else: self.obj_ptr_tpos_proj = torch.nn.Identity() def _forward_sam_heads( self, backbone_features, point_inputs=None, mask_inputs=None, high_res_features=None, multimask_output=False, ): """ Forward SAM prompt encoders and mask heads. Inputs: - backbone_features: image features of [B, C, H, W] shape - point_inputs: a dictionary with "point_coords" and "point_labels", where 1) "point_coords" has [B, P, 2] shape and float32 dtype and contains the absolute pixel-unit coordinate in (x, y) format of the P input points 2) "point_labels" has shape [B, P] and int32 dtype, where 1 means positive clicks, 0 means negative clicks, and -1 means padding - mask_inputs: a mask of [B, 1, H*16, W*16] shape, float or bool, with the same spatial size as the image. - high_res_features: either 1) None or 2) or a list of length 2 containing two feature maps of [B, C, 4*H, 4*W] and [B, C, 2*H, 2*W] shapes respectively, which will be used as high-resolution feature maps for SAM decoder. - multimask_output: if it's True, we output 3 candidate masks and their 3 corresponding IoU estimates, and if it's False, we output only 1 mask and its corresponding IoU estimate. Outputs: - low_res_multimasks: [B, M, H*4, W*4] shape (where M = 3 if `multimask_output=True` and M = 1 if `multimask_output=False`), the SAM output mask logits (before sigmoid) for the low-resolution masks, with 4x the resolution (1/4 stride) of the input backbone_features. - high_res_multimasks: [B, M, H*16, W*16] shape (where M = 3 if `multimask_output=True` and M = 1 if `multimask_output=False`), upsampled from the low-resolution masks, with shape size as the image (stride is 1 pixel). - ious, [B, M] shape, where (where M = 3 if `multimask_output=True` and M = 1 if `multimask_output=False`), the estimated IoU of each output mask. - low_res_masks: [B, 1, H*4, W*4] shape, the best mask in `low_res_multimasks`. If `multimask_output=True`, it's the mask with the highest IoU estimate. If `multimask_output=False`, it's the same as `low_res_multimasks`. - high_res_masks: [B, 1, H*16, W*16] shape, the best mask in `high_res_multimasks`. If `multimask_output=True`, it's the mask with the highest IoU estimate. If `multimask_output=False`, it's the same as `high_res_multimasks`. - obj_ptr: [B, C] shape, the object pointer vector for the output mask, extracted based on the output token from the SAM mask decoder. """ B = backbone_features.size(0) device = backbone_features.device assert backbone_features.size(1) == self.sam_prompt_embed_dim assert backbone_features.size(2) == self.sam_image_embedding_size assert backbone_features.size(3) == self.sam_image_embedding_size # a) Handle point prompts if point_inputs is not None: sam_point_coords = point_inputs["point_coords"] sam_point_labels = point_inputs["point_labels"] assert sam_point_coords.size(0) == B and sam_point_labels.size(0) == B else: # If no points are provide, pad with an empty point (with label -1) sam_point_coords = torch.zeros(B, 1, 2, device=device) sam_point_labels = -torch.ones(B, 1, dtype=torch.int32, device=device) # b) Handle mask prompts if mask_inputs is not None: # If mask_inputs is provided, downsize it into low-res mask input if needed # and feed it as a dense mask prompt into the SAM mask encoder assert len(mask_inputs.shape) == 4 and mask_inputs.shape[:2] == (B, 1) if mask_inputs.shape[-2:] != self.sam_prompt_encoder.mask_input_size: sam_mask_prompt = F.interpolate( mask_inputs.float(), size=self.sam_prompt_encoder.mask_input_size, align_corners=False, mode="bilinear", antialias=True, # use antialias for downsampling ) else: sam_mask_prompt = mask_inputs else: # Otherwise, simply feed None (and SAM's prompt encoder will add # a learned `no_mask_embed` to indicate no mask input in this case). sam_mask_prompt = None sparse_embeddings, dense_embeddings = self.sam_prompt_encoder( points=(sam_point_coords, sam_point_labels), boxes=None, masks=sam_mask_prompt, ) ( low_res_multimasks, ious, sam_output_tokens, object_score_logits, ) = self.sam_mask_decoder( image_embeddings=backbone_features, image_pe=self.sam_prompt_encoder.get_dense_pe(), sparse_prompt_embeddings=sparse_embeddings, dense_prompt_embeddings=dense_embeddings, multimask_output=multimask_output, repeat_image=False, # the image is already batched high_res_features=high_res_features, ) if self.pred_obj_scores: is_obj_appearing = object_score_logits > 0 # Mask used for spatial memories is always a *hard* choice between obj and no obj, # consistent with the actual mask prediction low_res_multimasks = torch.where( is_obj_appearing[:, None, None], low_res_multimasks, NO_OBJ_SCORE, ) # convert masks from possibly bfloat16 (or float16) to float32 # (older PyTorch versions before 2.1 don't support `interpolate` on bf16) _dtype = low_res_multimasks.dtype # low_res_multimasks = low_res_multimasks.float() high_res_multimasks = F.interpolate( low_res_multimasks.float(), size=(self.image_size, self.image_size), mode="bilinear", align_corners=False, ).to(_dtype) sam_output_token = sam_output_tokens[:, 0] if multimask_output: # take the best mask prediction (with the highest IoU estimation) best_iou_inds = torch.argmax(ious, dim=-1) batch_inds = torch.arange(B, device=device) low_res_masks = low_res_multimasks[batch_inds, best_iou_inds].unsqueeze(1) high_res_masks = high_res_multimasks[batch_inds, best_iou_inds].unsqueeze(1) if sam_output_tokens.size(1) > 1: sam_output_token = sam_output_tokens[batch_inds, best_iou_inds] else: low_res_masks, high_res_masks = low_res_multimasks, high_res_multimasks # Extract object pointer from the SAM output token (with occlusion handling) obj_ptr = self.obj_ptr_proj(sam_output_token) if self.pred_obj_scores: # Allow *soft* no obj ptr, unlike for masks if self.soft_no_obj_ptr: # Only hard possible with gt assert not self.teacher_force_obj_scores_for_mem lambda_is_obj_appearing = object_score_logits.sigmoid() else: lambda_is_obj_appearing = is_obj_appearing.float() if self.fixed_no_obj_ptr: obj_ptr = lambda_is_obj_appearing * obj_ptr obj_ptr = obj_ptr + (1 - lambda_is_obj_appearing) * self.no_obj_ptr return ( low_res_multimasks, high_res_multimasks, ious, low_res_masks, high_res_masks, obj_ptr, object_score_logits, ) def _use_mask_as_output(self, backbone_features, high_res_features, mask_inputs): """ Directly turn binary `mask_inputs` into a output mask logits without using SAM. (same input and output shapes as in _forward_sam_heads above). """ # Use -10/+10 as logits for neg/pos pixels (very close to 0/1 in prob after sigmoid). out_scale, out_bias = 20.0, -10.0 # sigmoid(-10.0)=4.5398e-05 mask_inputs_float = mask_inputs.float() high_res_masks = mask_inputs_float * out_scale + out_bias low_res_masks = F.interpolate( high_res_masks, size=(high_res_masks.size(-2) // 4, high_res_masks.size(-1) // 4), align_corners=False, mode="bilinear", antialias=True, # use antialias for downsampling ) # a dummy IoU prediction of all 1's under mask input ious = mask_inputs.new_ones(mask_inputs.size(0), 1).float() if not self.use_obj_ptrs_in_encoder: # all zeros as a dummy object pointer (of shape [B, C]) obj_ptr = torch.zeros( mask_inputs.size(0), self.hidden_dim, device=mask_inputs.device ) else: # produce an object pointer using the SAM decoder from the mask input _, _, _, _, _, obj_ptr, _ = self._forward_sam_heads( backbone_features=backbone_features, mask_inputs=self.mask_downsample(mask_inputs_float), high_res_features=high_res_features, ) # In this method, we are treating mask_input as output, e.g. using it directly to create spatial mem; # Below, we follow the same design axiom to use mask_input to decide if obj appears or not instead of relying # on the object_scores from the SAM decoder. is_obj_appearing = torch.any(mask_inputs.flatten(1).float() > 0.0, dim=1) is_obj_appearing = is_obj_appearing[..., None] lambda_is_obj_appearing = is_obj_appearing.float() object_score_logits = out_scale * lambda_is_obj_appearing + out_bias if self.pred_obj_scores: if self.fixed_no_obj_ptr: obj_ptr = lambda_is_obj_appearing * obj_ptr obj_ptr = obj_ptr + (1 - lambda_is_obj_appearing) * self.no_obj_ptr return ( low_res_masks, high_res_masks, ious, low_res_masks, high_res_masks, obj_ptr, object_score_logits, ) def forward_image(self, img_batch: torch.Tensor): """Get the image feature on the input batch.""" backbone_out = self.image_encoder(img_batch) if self.use_high_res_features_in_sam: # precompute projected level 0 and level 1 features in SAM decoder # to avoid running it again on every SAM click backbone_out["backbone_fpn"][0] = self.sam_mask_decoder.conv_s0( backbone_out["backbone_fpn"][0] ) backbone_out["backbone_fpn"][1] = self.sam_mask_decoder.conv_s1( backbone_out["backbone_fpn"][1] ) return backbone_out def _prepare_backbone_features(self, backbone_out): """Prepare and flatten visual features.""" backbone_out = backbone_out.copy() assert len(backbone_out["backbone_fpn"]) == len(backbone_out["vision_pos_enc"]) assert len(backbone_out["backbone_fpn"]) >= self.num_feature_levels feature_maps = backbone_out["backbone_fpn"][-self.num_feature_levels :] vision_pos_embeds = backbone_out["vision_pos_enc"][-self.num_feature_levels :] feat_sizes = [(x.shape[-2], x.shape[-1]) for x in vision_pos_embeds] # flatten NxCxHxW to HWxNxC vision_feats = [x.flatten(2).permute(2, 0, 1) for x in feature_maps] vision_pos_embeds = [x.flatten(2).permute(2, 0, 1) for x in vision_pos_embeds] return backbone_out, vision_feats, vision_pos_embeds, feat_sizes def _prepare_memory_conditioned_features( self, frame_idx, is_init_cond_frame, current_vision_feats, current_vision_pos_embeds, feat_sizes, output_dict, num_frames, track_in_reverse=False, # tracking in reverse time order (for demo usage) ): """Fuse the current frame's visual feature map with previous memory.""" B = current_vision_feats[-1].size(1) # batch size on this frame C = self.hidden_dim H, W = feat_sizes[-1] # top-level (lowest-resolution) feature size device = current_vision_feats[-1].device # The case of `self.num_maskmem == 0` below is primarily used for reproducing SAM on images. # In this case, we skip the fusion with any memory. if self.num_maskmem == 0: # Disable memory and skip fusion pix_feat = current_vision_feats[-1].permute(1, 2, 0).view(B, C, H, W) return pix_feat num_obj_ptr_tokens = 0 # Step 1: condition the visual features of the current frame on previous memories if not is_init_cond_frame: # Retrieve the memories encoded with the maskmem backbone to_cat_memory, to_cat_memory_pos_embed = [], [] # Add conditioning frames's output first (all cond frames have t_pos=0 for # when getting temporal positional embedding below) assert len(output_dict["cond_frame_outputs"]) > 0 # Select a maximum number of temporally closest cond frames for cross attention cond_outputs = output_dict["cond_frame_outputs"] selected_cond_outputs, unselected_cond_outputs = select_closest_cond_frames( frame_idx, cond_outputs, self.max_cond_frames_in_attn ) t_pos_and_prevs = [(0, out) for out in selected_cond_outputs.values()] # Add last (self.num_maskmem - 1) frames before current frame for non-conditioning memory # the earliest one has t_pos=1 and the latest one has t_pos=self.num_maskmem-1 # We also allow taking the memory frame non-consecutively (with r>1), in which case # we take (self.num_maskmem - 2) frames among every r-th frames plus the last frame. r = self.memory_temporal_stride_for_eval for t_pos in range(1, self.num_maskmem): t_rel = self.num_maskmem - t_pos # how many frames before current frame if t_rel == 1: # for t_rel == 1, we take the last frame (regardless of r) if not track_in_reverse: # the frame immediately before this frame (i.e. frame_idx - 1) prev_frame_idx = frame_idx - t_rel else: # the frame immediately after this frame (i.e. frame_idx + 1) prev_frame_idx = frame_idx + t_rel else: # for t_rel >= 2, we take the memory frame from every r-th frames if not track_in_reverse: # first find the nearest frame among every r-th frames before this frame # for r=1, this would be (frame_idx - 2) prev_frame_idx = ((frame_idx - 2) // r) * r # then seek further among every r-th frames prev_frame_idx = prev_frame_idx - (t_rel - 2) * r else: # first find the nearest frame among every r-th frames after this frame # for r=1, this would be (frame_idx + 2) prev_frame_idx = -(-(frame_idx + 2) // r) * r # then seek further among every r-th frames prev_frame_idx = prev_frame_idx + (t_rel - 2) * r out = output_dict["non_cond_frame_outputs"].get(prev_frame_idx, None) if out is None: # If an unselected conditioning frame is among the last (self.num_maskmem - 1) # frames, we still attend to it as if it's a non-conditioning frame. out = unselected_cond_outputs.get(prev_frame_idx, None) t_pos_and_prevs.append((t_pos, out)) for t_pos, prev in t_pos_and_prevs: if prev is None: continue # skip padding frames # "maskmem_features" might have been offloaded to CPU in demo use cases, # so we load it back to GPU (it's a no-op if it's already on GPU). feats = prev["maskmem_features"].cuda(non_blocking=True) to_cat_memory.append(feats.flatten(2).permute(2, 0, 1)) # Spatial positional encoding (it might have been offloaded to CPU in eval) maskmem_enc = prev["maskmem_pos_enc"][-1].cuda() maskmem_enc = maskmem_enc.flatten(2).permute(2, 0, 1) # Temporal positional encoding maskmem_enc = ( maskmem_enc + self.maskmem_tpos_enc[self.num_maskmem - t_pos - 1] ) to_cat_memory_pos_embed.append(maskmem_enc) # Construct the list of past object pointers if self.use_obj_ptrs_in_encoder: max_obj_ptrs_in_encoder = min(num_frames, self.max_obj_ptrs_in_encoder) # First add those object pointers from selected conditioning frames # (optionally, only include object pointers in the past during evaluation) if not self.training and self.only_obj_ptrs_in_the_past_for_eval: ptr_cond_outputs = { t: out for t, out in selected_cond_outputs.items() if (t >= frame_idx if track_in_reverse else t <= frame_idx) } else: ptr_cond_outputs = selected_cond_outputs pos_and_ptrs = [ # Temporal pos encoding contains how far away each pointer is from current frame (abs(frame_idx - t), out["obj_ptr"]) for t, out in ptr_cond_outputs.items() ] # Add up to (max_obj_ptrs_in_encoder - 1) non-conditioning frames before current frame for t_diff in range(1, max_obj_ptrs_in_encoder): t = frame_idx + t_diff if track_in_reverse else frame_idx - t_diff if t < 0 or (num_frames is not None and t >= num_frames): break out = output_dict["non_cond_frame_outputs"].get( t, unselected_cond_outputs.get(t, None) ) if out is not None: pos_and_ptrs.append((t_diff, out["obj_ptr"])) # If we have at least one object pointer, add them to the across attention if len(pos_and_ptrs) > 0: pos_list, ptrs_list = zip(*pos_and_ptrs) # stack object pointers along dim=0 into [ptr_seq_len, B, C] shape obj_ptrs = torch.stack(ptrs_list, dim=0) # a temporal positional embedding based on how far each object pointer is from # the current frame (sine embedding normalized by the max pointer num). if self.add_tpos_enc_to_obj_ptrs: t_diff_max = max_obj_ptrs_in_encoder - 1 tpos_dim = C if self.proj_tpos_enc_in_obj_ptrs else self.mem_dim obj_pos = torch.tensor(pos_list, device=device) obj_pos = get_1d_sine_pe(obj_pos / t_diff_max, dim=tpos_dim) obj_pos = self.obj_ptr_tpos_proj(obj_pos) obj_pos = obj_pos.unsqueeze(1).expand(-1, B, self.mem_dim) else: obj_pos = obj_ptrs.new_zeros(len(pos_list), B, self.mem_dim) if self.mem_dim < C: # split a pointer into (C // self.mem_dim) tokens for self.mem_dim < C obj_ptrs = obj_ptrs.reshape( -1, B, C // self.mem_dim, self.mem_dim ) obj_ptrs = obj_ptrs.permute(0, 2, 1, 3).flatten(0, 1) obj_pos = obj_pos.repeat_interleave(C // self.mem_dim, dim=0) to_cat_memory.append(obj_ptrs) to_cat_memory_pos_embed.append(obj_pos) num_obj_ptr_tokens = obj_ptrs.shape[0] else: num_obj_ptr_tokens = 0 else: # for initial conditioning frames, encode them without using any previous memory if self.directly_add_no_mem_embed: # directly add no-mem embedding (instead of using the transformer encoder) pix_feat_with_mem = current_vision_feats[-1] + self.no_mem_embed pix_feat_with_mem = pix_feat_with_mem.permute(1, 2, 0).view(B, C, H, W) return pix_feat_with_mem # Use a dummy token on the first frame (to avoid emtpy memory input to tranformer encoder) to_cat_memory = [self.no_mem_embed.expand(1, B, self.mem_dim)] to_cat_memory_pos_embed = [self.no_mem_pos_enc.expand(1, B, self.mem_dim)] # Step 2: Concatenate the memories and forward through the transformer encoder memory = torch.cat(to_cat_memory, dim=0) memory_pos_embed = torch.cat(to_cat_memory_pos_embed, dim=0) pix_feat_with_mem = self.memory_attention( curr=current_vision_feats, curr_pos=current_vision_pos_embeds, memory=memory, memory_pos=memory_pos_embed, num_obj_ptr_tokens=num_obj_ptr_tokens, ) # reshape the output (HW)BC => BCHW pix_feat_with_mem = pix_feat_with_mem.permute(1, 2, 0).view(B, C, H, W) return pix_feat_with_mem def _encode_new_memory( self, current_vision_feats, feat_sizes, pred_masks_high_res, is_mask_from_pts, ): """Encode the current image and its prediction into a memory feature.""" B = current_vision_feats[-1].size(1) # batch size on this frame C = self.hidden_dim H, W = feat_sizes[-1] # top-level (lowest-resolution) feature size # top-level feature, (HW)BC => BCHW pix_feat = current_vision_feats[-1].permute(1, 2, 0).view(B, C, H, W) if self.non_overlap_masks_for_mem_enc and not self.training: # optionally, apply non-overlapping constraints to the masks (it's applied # in the batch dimension and should only be used during eval, where all # the objects come from the same video under batch size 1). pred_masks_high_res = self._apply_non_overlapping_constraints( pred_masks_high_res ) # scale the raw mask logits with a temperature before applying sigmoid binarize = self.binarize_mask_from_pts_for_mem_enc and is_mask_from_pts if binarize and not self.training: mask_for_mem = (pred_masks_high_res > 0).float() else: # apply sigmoid on the raw mask logits to turn them into range (0, 1) mask_for_mem = torch.sigmoid(pred_masks_high_res) # apply scale and bias terms to the sigmoid probabilities if self.sigmoid_scale_for_mem_enc != 1.0: mask_for_mem = mask_for_mem * self.sigmoid_scale_for_mem_enc if self.sigmoid_bias_for_mem_enc != 0.0: mask_for_mem = mask_for_mem + self.sigmoid_bias_for_mem_enc maskmem_out = self.memory_encoder( pix_feat, mask_for_mem, skip_mask_sigmoid=True # sigmoid already applied ) maskmem_features = maskmem_out["vision_features"] maskmem_pos_enc = maskmem_out["vision_pos_enc"] return maskmem_features, maskmem_pos_enc def track_step( self, frame_idx, is_init_cond_frame, current_vision_feats, current_vision_pos_embeds, feat_sizes, point_inputs, mask_inputs, output_dict, num_frames, track_in_reverse=False, # tracking in reverse time order (for demo usage) # Whether to run the memory encoder on the predicted masks. Sometimes we might want # to skip the memory encoder with `run_mem_encoder=False`. For example, # in demo we might call `track_step` multiple times for each user click, # and only encode the memory when the user finalizes their clicks. And in ablation # settings like SAM training on static images, we don't need the memory encoder. run_mem_encoder=True, # The previously predicted SAM mask logits (which can be fed together with new clicks in demo). prev_sam_mask_logits=None, ): current_out = {"point_inputs": point_inputs, "mask_inputs": mask_inputs} # High-resolution feature maps for the SAM head, reshape (HW)BC => BCHW if len(current_vision_feats) > 1: high_res_features = [ x.permute(1, 2, 0).view(x.size(1), x.size(2), *s) for x, s in zip(current_vision_feats[:-1], feat_sizes[:-1]) ] else: high_res_features = None if mask_inputs is not None and self.use_mask_input_as_output_without_sam: # When use_mask_input_as_output_without_sam=True, we directly output the mask input # (see it as a GT mask) without using a SAM prompt encoder + mask decoder. pix_feat = current_vision_feats[-1].permute(1, 2, 0) pix_feat = pix_feat.view(-1, self.hidden_dim, *feat_sizes[-1]) sam_outputs = self._use_mask_as_output( pix_feat, high_res_features, mask_inputs ) else: # fused the visual feature with previous memory features in the memory bank pix_feat_with_mem = self._prepare_memory_conditioned_features( frame_idx=frame_idx, is_init_cond_frame=is_init_cond_frame, current_vision_feats=current_vision_feats[-1:], current_vision_pos_embeds=current_vision_pos_embeds[-1:], feat_sizes=feat_sizes[-1:], output_dict=output_dict, num_frames=num_frames, track_in_reverse=track_in_reverse, ) # apply SAM-style segmentation head # here we might feed previously predicted low-res SAM mask logits into the SAM mask decoder, # e.g. in demo where such logits come from earlier interaction instead of correction sampling # (in this case, any `mask_inputs` shouldn't reach here as they are sent to _use_mask_as_output instead) if prev_sam_mask_logits is not None: assert point_inputs is not None and mask_inputs is None mask_inputs = prev_sam_mask_logits multimask_output = self._use_multimask(is_init_cond_frame, point_inputs) sam_outputs = self._forward_sam_heads( backbone_features=pix_feat_with_mem, point_inputs=point_inputs, mask_inputs=mask_inputs, high_res_features=high_res_features, multimask_output=multimask_output, ) ( _, _, _, low_res_masks, high_res_masks, obj_ptr, _, ) = sam_outputs current_out["pred_masks"] = low_res_masks current_out["pred_masks_high_res"] = high_res_masks current_out["obj_ptr"] = obj_ptr # Finally run the memory encoder on the predicted mask to encode # it into a new memory feature (that can be used in future frames) if run_mem_encoder and self.num_maskmem > 0: high_res_masks_for_mem_enc = high_res_masks maskmem_features, maskmem_pos_enc = self._encode_new_memory( current_vision_feats=current_vision_feats, feat_sizes=feat_sizes, pred_masks_high_res=high_res_masks_for_mem_enc, is_mask_from_pts=(point_inputs is not None), ) current_out["maskmem_features"] = maskmem_features current_out["maskmem_pos_enc"] = maskmem_pos_enc else: current_out["maskmem_features"] = None current_out["maskmem_pos_enc"] = None return current_out def _use_multimask(self, is_init_cond_frame, point_inputs): """Whether to use multimask output in the SAM head.""" num_pts = 0 if point_inputs is None else point_inputs["point_labels"].size(1) multimask_output = ( self.multimask_output_in_sam and (is_init_cond_frame or self.multimask_output_for_tracking) and (self.multimask_min_pt_num <= num_pts <= self.multimask_max_pt_num) ) return multimask_output def _apply_non_overlapping_constraints(self, pred_masks): """ Apply non-overlapping constraints to the object scores in pred_masks. Here we keep only the highest scoring object at each spatial location in pred_masks. """ batch_size = pred_masks.size(0) if batch_size == 1: return pred_masks device = pred_masks.device # "max_obj_inds": object index of the object with the highest score at each location max_obj_inds = torch.argmax(pred_masks, dim=0, keepdim=True) # "batch_obj_inds": object index of each object slice (along dim 0) in `pred_masks` batch_obj_inds = torch.arange(batch_size, device=device)[:, None, None, None] keep = max_obj_inds == batch_obj_inds # suppress overlapping regions' scores below -10.0 so that the foreground regions # don't overlap (here sigmoid(-10.0)=4.5398e-05) pred_masks = torch.where(keep, pred_masks, torch.clamp(pred_masks, max=-10.0)) return pred_masks class SAM2Base(SAM2Base_): def track_step( self, frame_idx, is_init_cond_frame, current_vision_feats, current_vision_pos_embeds, feat_sizes, point_inputs, mask_inputs, output_dict, num_frames, track_in_reverse=False, # tracking in reverse time order (for demo usage) # Whether to run the memory encoder on the predicted masks. Sometimes we might want # to skip the memory encoder with `run_mem_encoder=False`. For example, # in demo we might call `track_step` multiple times for each user click, # and only encode the memory when the user finalizes their clicks. And in ablation # settings like SAM training on static images, we don't need the memory encoder. run_mem_encoder=True, # The previously predicted SAM mask logits (which can be fed together with new clicks in demo). prev_sam_mask_logits=None, ## Extension: LLM prompt language_embd=None, ): current_out = {"point_inputs": point_inputs, "mask_inputs": mask_inputs} # High-resolution feature maps for the SAM head, reshape (HW)BC => BCHW if len(current_vision_feats) > 1: high_res_features = [ x.permute(1, 2, 0).view(x.size(1), x.size(2), *s) for x, s in zip(current_vision_feats[:-1], feat_sizes[:-1]) ] else: high_res_features = None if mask_inputs is not None and self.use_mask_input_as_output_without_sam: # When use_mask_input_as_output_without_sam=True, we directly output the mask input # (see it as a GT mask) without using a SAM prompt encoder + mask decoder. pix_feat = current_vision_feats[-1].permute(1, 2, 0) pix_feat = pix_feat.view(-1, self.hidden_dim, *feat_sizes[-1]) sam_outputs = self._use_mask_as_output( pix_feat, high_res_features, mask_inputs ) else: # fused the visual feature with previous memory features in the memory bank pix_feat_with_mem = self._prepare_memory_conditioned_features( frame_idx=frame_idx, is_init_cond_frame=is_init_cond_frame, current_vision_feats=current_vision_feats[-1:], current_vision_pos_embeds=current_vision_pos_embeds[-1:], feat_sizes=feat_sizes[-1:], output_dict=output_dict, num_frames=num_frames, track_in_reverse=track_in_reverse, ) # apply SAM-style segmentation head # here we might feed previously predicted low-res SAM mask logits into the SAM mask decoder, # e.g. in demo where such logits come from earlier interaction instead of correction sampling # (in this case, any `mask_inputs` shouldn't reach here as they are sent to _use_mask_as_output instead) if prev_sam_mask_logits is not None: assert point_inputs is not None and mask_inputs is None mask_inputs = prev_sam_mask_logits multimask_output = self._use_multimask(is_init_cond_frame, point_inputs) sam_outputs = self._forward_sam_heads( backbone_features=pix_feat_with_mem, point_inputs=point_inputs, mask_inputs=mask_inputs, high_res_features=high_res_features, multimask_output=multimask_output, # Inject language Embed if possible language_embd=language_embd, ) ( _, _, _, low_res_masks, high_res_masks, obj_ptr, _, ) = sam_outputs current_out["pred_masks"] = low_res_masks current_out["pred_masks_high_res"] = high_res_masks current_out["obj_ptr"] = obj_ptr # Finally run the memory encoder on the predicted mask to encode # it into a new memory feature (that can be used in future frames) if run_mem_encoder and self.num_maskmem > 0: high_res_masks_for_mem_enc = high_res_masks maskmem_features, maskmem_pos_enc = self._encode_new_memory( current_vision_feats=current_vision_feats, feat_sizes=feat_sizes, pred_masks_high_res=high_res_masks_for_mem_enc, is_mask_from_pts=(point_inputs is not None), ) current_out["maskmem_features"] = maskmem_features current_out["maskmem_pos_enc"] = maskmem_pos_enc else: current_out["maskmem_features"] = None current_out["maskmem_pos_enc"] = None return current_out def _forward_sam_heads( self, backbone_features, point_inputs=None, mask_inputs=None, high_res_features=None, multimask_output=False, ## Extension: LLM prompt language_embd=None, ): """ Forward SAM prompt encoders and mask heads. Inputs: - backbone_features: image features of [B, C, H, W] shape - point_inputs: a dictionary with "point_coords" and "point_labels", where 1) "point_coords" has [B, P, 2] shape and float32 dtype and contains the absolute pixel-unit coordinate in (x, y) format of the P input points 2) "point_labels" has shape [B, P] and int32 dtype, where 1 means positive clicks, 0 means negative clicks, and -1 means padding - mask_inputs: a mask of [B, 1, H*16, W*16] shape, float or bool, with the same spatial size as the image. - high_res_features: either 1) None or 2) or a list of length 2 containing two feature maps of [B, C, 4*H, 4*W] and [B, C, 2*H, 2*W] shapes respectively, which will be used as high-resolution feature maps for SAM decoder. - multimask_output: if it's True, we output 3 candidate masks and their 3 corresponding IoU estimates, and if it's False, we output only 1 mask and its corresponding IoU estimate. Outputs: - low_res_multimasks: [B, M, H*4, W*4] shape (where M = 3 if `multimask_output=True` and M = 1 if `multimask_output=False`), the SAM output mask logits (before sigmoid) for the low-resolution masks, with 4x the resolution (1/4 stride) of the input backbone_features. - high_res_multimasks: [B, M, H*16, W*16] shape (where M = 3 if `multimask_output=True` and M = 1 if `multimask_output=False`), upsampled from the low-resolution masks, with shape size as the image (stride is 1 pixel). - ious, [B, M] shape, where (where M = 3 if `multimask_output=True` and M = 1 if `multimask_output=False`), the estimated IoU of each output mask. - low_res_masks: [B, 1, H*4, W*4] shape, the best mask in `low_res_multimasks`. If `multimask_output=True`, it's the mask with the highest IoU estimate. If `multimask_output=False`, it's the same as `low_res_multimasks`. - high_res_masks: [B, 1, H*16, W*16] shape, the best mask in `high_res_multimasks`. If `multimask_output=True`, it's the mask with the highest IoU estimate. If `multimask_output=False`, it's the same as `high_res_multimasks`. - obj_ptr: [B, C] shape, the object pointer vector for the output mask, extracted based on the output token from the SAM mask decoder. """ B = backbone_features.size(0) device = backbone_features.device assert backbone_features.size(1) == self.sam_prompt_embed_dim assert backbone_features.size(2) == self.sam_image_embedding_size assert backbone_features.size(3) == self.sam_image_embedding_size # a) Handle point prompts if point_inputs is not None: sam_point_coords = point_inputs["point_coords"] sam_point_labels = point_inputs["point_labels"] assert sam_point_coords.size(0) == B and sam_point_labels.size(0) == B else: # If no points are provide, pad with an empty point (with label -1) sam_point_coords = torch.zeros(B, 1, 2, device=device) sam_point_labels = -torch.ones(B, 1, dtype=torch.int32, device=device) # b) Handle mask prompts if mask_inputs is not None: # If mask_inputs is provided, downsize it into low-res mask input if needed # and feed it as a dense mask prompt into the SAM mask encoder assert len(mask_inputs.shape) == 4 and mask_inputs.shape[:2] == (B, 1) if mask_inputs.shape[-2:] != self.sam_prompt_encoder.mask_input_size: sam_mask_prompt = F.interpolate( mask_inputs.float(), size=self.sam_prompt_encoder.mask_input_size, align_corners=False, mode="bilinear", antialias=True, # use antialias for downsampling ) else: sam_mask_prompt = mask_inputs else: # Otherwise, simply feed None (and SAM's prompt encoder will add # a learned `no_mask_embed` to indicate no mask input in this case). sam_mask_prompt = None sparse_embeddings, dense_embeddings = self.sam_prompt_encoder( points=(sam_point_coords, sam_point_labels), boxes=None, masks=sam_mask_prompt, ) ## Extension: LLM prompt if language_embd is not None: # B N C assert sparse_embeddings.size(0) == language_embd.size(0) assert sparse_embeddings.size(2) == language_embd.size(2) sparse_embeddings = torch.cat([sparse_embeddings, language_embd], dim=1) ( low_res_multimasks, ious, sam_output_tokens, object_score_logits, ) = self.sam_mask_decoder( image_embeddings=backbone_features, image_pe=self.sam_prompt_encoder.get_dense_pe(), sparse_prompt_embeddings=sparse_embeddings, dense_prompt_embeddings=dense_embeddings, multimask_output=multimask_output, repeat_image=False, # the image is already batched high_res_features=high_res_features, ) if self.pred_obj_scores: is_obj_appearing = object_score_logits > 0 # Mask used for spatial memories is always a *hard* choice between obj and no obj, # consistent with the actual mask prediction # print('Do torch.where !!!') # low_res_multimasks = torch.where( # is_obj_appearing[:, None, None], # low_res_multimasks, # NO_OBJ_SCORE, # ) # convert masks from possibly bfloat16 (or float16) to float32 # (older PyTorch versions before 2.1 don't support `interpolate` on bf16) low_res_multimasks = low_res_multimasks.float() high_res_multimasks = F.interpolate( low_res_multimasks, size=(self.image_size, self.image_size), mode="bilinear", align_corners=False, ) sam_output_token = sam_output_tokens[:, 0] if multimask_output: # take the best mask prediction (with the highest IoU estimation) best_iou_inds = torch.argmax(ious, dim=-1) batch_inds = torch.arange(B, device=device) low_res_masks = low_res_multimasks[batch_inds, best_iou_inds].unsqueeze(1) high_res_masks = high_res_multimasks[batch_inds, best_iou_inds].unsqueeze(1) if sam_output_tokens.size(1) > 1: sam_output_token = sam_output_tokens[batch_inds, best_iou_inds] else: low_res_masks, high_res_masks = low_res_multimasks, high_res_multimasks # Extract object pointer from the SAM output token (with occlusion handling) obj_ptr = self.obj_ptr_proj(sam_output_token) if self.pred_obj_scores: # Allow *soft* no obj ptr, unlike for masks if self.soft_no_obj_ptr: # Only hard possible with gt assert not self.teacher_force_obj_scores_for_mem lambda_is_obj_appearing = object_score_logits.sigmoid() else: lambda_is_obj_appearing = is_obj_appearing.float() if self.fixed_no_obj_ptr: obj_ptr = lambda_is_obj_appearing * obj_ptr obj_ptr = obj_ptr + (1 - lambda_is_obj_appearing) * self.no_obj_ptr return ( low_res_multimasks, high_res_multimasks, ious, low_res_masks, high_res_masks, obj_ptr, object_score_logits, ) def _obj_id_to_idx(inference_state, obj_id): """Map client-side object id to model-side object index.""" obj_idx = inference_state["obj_id_to_idx"].get(obj_id, None) if obj_idx is not None: return obj_idx # This is a new object id not sent to the server before. We only allow adding # new objects *before* the tracking starts. allow_new_object = not inference_state["tracking_has_started"] if allow_new_object: # get the next object slot obj_idx = len(inference_state["obj_id_to_idx"]) inference_state["obj_id_to_idx"][obj_id] = obj_idx inference_state["obj_idx_to_id"][obj_idx] = obj_id inference_state["obj_ids"] = list(inference_state["obj_id_to_idx"]) # set up input and output structures for this object inference_state["point_inputs_per_obj"][obj_idx] = {} inference_state["mask_inputs_per_obj"][obj_idx] = {} inference_state["output_dict_per_obj"][obj_idx] = { "cond_frame_outputs": {}, # dict containing {frame_idx: } "non_cond_frame_outputs": {}, # dict containing {frame_idx: } } inference_state["temp_output_dict_per_obj"][obj_idx] = { "cond_frame_outputs": {}, # dict containing {frame_idx: } "non_cond_frame_outputs": {}, # dict containing {frame_idx: } } return obj_idx else: raise RuntimeError( f"Cannot add new object id {obj_id} after tracking starts. " f"All existing object ids: {inference_state['obj_ids']}. " f"Please call 'reset_state' to restart from scratch." ) def _get_maskmem_pos_enc(inference_state, current_out): """ `maskmem_pos_enc` is the same across frames and objects, so we cache it as a constant in the inference session to reduce session storage size. """ model_constants = inference_state["constants"] # "out_maskmem_pos_enc" should be either a list of tensors or None out_maskmem_pos_enc = current_out["maskmem_pos_enc"] if out_maskmem_pos_enc is not None: if "maskmem_pos_enc" not in model_constants: assert isinstance(out_maskmem_pos_enc, list) # only take the slice for one object, since it's same across objects maskmem_pos_enc = [x[0:1].clone() for x in out_maskmem_pos_enc] model_constants["maskmem_pos_enc"] = maskmem_pos_enc else: maskmem_pos_enc = model_constants["maskmem_pos_enc"] # expand the cached maskmem_pos_enc to the actual batch size batch_size = out_maskmem_pos_enc[0].size(0) expanded_maskmem_pos_enc = [ x.expand(batch_size, -1, -1, -1) for x in maskmem_pos_enc ] else: expanded_maskmem_pos_enc = None return expanded_maskmem_pos_enc def _obj_idx_to_id(inference_state, obj_idx): """Map model-side object index to client-side object id.""" return inference_state["obj_idx_to_id"][obj_idx] def _get_obj_num(inference_state): """Get the total number of unique object ids received so far in this session.""" return len(inference_state["obj_idx_to_id"]) class SAM2VideoPredictor(SAM2Base): """The predictor class to handle user interactions and manage inference states.""" def __init__( self, fill_hole_area=0, # whether to apply non-overlapping constraints on the output object masks non_overlap_masks=False, # whether to clear non-conditioning memory of the surrounding frames (which may contain outdated information) after adding correction clicks; # note that this would only apply to *single-object tracking* unless `clear_non_cond_mem_for_multi_obj` is also set to True) clear_non_cond_mem_around_input=False, # whether to also clear non-conditioning memory of the surrounding frames (only effective when `clear_non_cond_mem_around_input` is True). clear_non_cond_mem_for_multi_obj=False, **kwargs, ): super().__init__(**kwargs) self.fill_hole_area = fill_hole_area self.non_overlap_masks = non_overlap_masks self.clear_non_cond_mem_around_input = clear_non_cond_mem_around_input self.clear_non_cond_mem_for_multi_obj = clear_non_cond_mem_for_multi_obj def _get_image_feature(self, inference_state, frame_idx, batch_size): """Compute the image features on a given frame.""" # Look up in the cache first image, backbone_out = inference_state["cached_features"].get( frame_idx, (None, None) ) if backbone_out is None: # Cache miss -- we will run inference on a single image # image = inference_state["images"][frame_idx].cuda().float().unsqueeze(0) image = inference_state["images"][frame_idx].cuda().unsqueeze(0) backbone_out = self.forward_image(image) # Cache the most recent frame's feature (for repeated interactions with # a frame; we can use an LRU cache for more frames in the future). inference_state["cached_features"] = {frame_idx: (image, backbone_out)} # expand the features to have the same dimension as the number of objects expanded_image = image.expand(batch_size, -1, -1, -1) expanded_backbone_out = { "backbone_fpn": backbone_out["backbone_fpn"].copy(), "vision_pos_enc": backbone_out["vision_pos_enc"].copy(), } for i, feat in enumerate(expanded_backbone_out["backbone_fpn"]): expanded_backbone_out["backbone_fpn"][i] = feat.expand( batch_size, -1, -1, -1 ) for i, pos in enumerate(expanded_backbone_out["vision_pos_enc"]): pos = pos.expand(batch_size, -1, -1, -1) expanded_backbone_out["vision_pos_enc"][i] = pos features = self._prepare_backbone_features(expanded_backbone_out) features = (expanded_image,) + features return features def _run_single_frame_inference( self, inference_state, output_dict, frame_idx, batch_size, is_init_cond_frame, point_inputs, mask_inputs, reverse, run_mem_encoder, prev_sam_mask_logits=None, ## Extension: LLM prompt language_embd=None, ): """Run tracking on a single frame based on current inputs and previous memory.""" # Retrieve correct image features ( _, _, current_vision_feats, current_vision_pos_embeds, feat_sizes, ) = self._get_image_feature(inference_state, frame_idx, batch_size) # point and mask should not appear as input simultaneously on the same frame assert point_inputs is None or mask_inputs is None current_out = self.track_step( frame_idx=frame_idx, is_init_cond_frame=is_init_cond_frame, current_vision_feats=current_vision_feats, current_vision_pos_embeds=current_vision_pos_embeds, feat_sizes=feat_sizes, point_inputs=point_inputs, mask_inputs=mask_inputs, output_dict=output_dict, num_frames=inference_state["num_frames"], track_in_reverse=reverse, run_mem_encoder=run_mem_encoder, prev_sam_mask_logits=prev_sam_mask_logits, language_embd=language_embd, ) # optionally offload the output to CPU memory to save GPU space storage_device = inference_state["storage_device"] maskmem_features = current_out["maskmem_features"] if maskmem_features is not None: maskmem_features = maskmem_features.to(torch.bfloat16) maskmem_features = maskmem_features.to(storage_device, non_blocking=True) pred_masks_gpu = current_out["pred_masks"] # potentially fill holes in the predicted masks if self.fill_hole_area > 0: pred_masks_gpu = fill_holes_in_mask_scores( pred_masks_gpu, self.fill_hole_area ) pred_masks = pred_masks_gpu.to(storage_device, non_blocking=True) # "maskmem_pos_enc" is the same across frames, so we only need to store one copy of it maskmem_pos_enc = _get_maskmem_pos_enc(inference_state, current_out) # object pointer is a small tensor, so we always keep it on GPU memory for fast access obj_ptr = current_out["obj_ptr"] # make a compact version of this frame's output to reduce the state size compact_current_out = { "maskmem_features": maskmem_features, "maskmem_pos_enc": maskmem_pos_enc, "pred_masks": pred_masks, "obj_ptr": obj_ptr, } return compact_current_out, pred_masks_gpu def _consolidate_temp_output_across_obj( self, inference_state, frame_idx, is_cond, run_mem_encoder, consolidate_at_video_res=False, ): """ Consolidate the per-object temporary outputs in `temp_output_dict_per_obj` on a frame into a single output for all objects, including 1) fill any missing objects either from `output_dict_per_obj` (if they exist in `output_dict_per_obj` for this frame) or leave them as placeholder values (if they don't exist in `output_dict_per_obj` for this frame); 2) if specified, rerun memory encoder after apply non-overlapping constraints on the object scores. """ batch_size = _get_obj_num(inference_state) storage_key = "cond_frame_outputs" if is_cond else "non_cond_frame_outputs" # Optionally, we allow consolidating the temporary outputs at the original # video resolution (to provide a better editing experience for mask prompts). if consolidate_at_video_res: assert not run_mem_encoder, "memory encoder cannot run at video resolution" consolidated_H = inference_state["video_height"] consolidated_W = inference_state["video_width"] consolidated_mask_key = "pred_masks_video_res" else: consolidated_H = consolidated_W = self.image_size // 4 consolidated_mask_key = "pred_masks" # Initialize `consolidated_out`. Its "maskmem_features" and "maskmem_pos_enc" # will be added when rerunning the memory encoder after applying non-overlapping # constraints to object scores. Its "pred_masks" are prefilled with a large # negative value (NO_OBJ_SCORE) to represent missing objects. consolidated_out = { "maskmem_features": None, "maskmem_pos_enc": None, consolidated_mask_key: torch.full( size=(batch_size, 1, consolidated_H, consolidated_W), fill_value=NO_OBJ_SCORE, dtype=torch.float32, device=inference_state["storage_device"], ), "obj_ptr": torch.full( size=(batch_size, self.hidden_dim), fill_value=NO_OBJ_SCORE, dtype=torch.float32, device=inference_state["device"], ), } empty_mask_ptr = None for obj_idx in range(batch_size): obj_temp_output_dict = inference_state["temp_output_dict_per_obj"][obj_idx] obj_output_dict = inference_state["output_dict_per_obj"][obj_idx] out = obj_temp_output_dict[storage_key].get(frame_idx, None) # If the object doesn't appear in "temp_output_dict_per_obj" on this frame, # we fall back and look up its previous output in "output_dict_per_obj". # We look up both "cond_frame_outputs" and "non_cond_frame_outputs" in # "output_dict_per_obj" to find a previous output for this object. if out is None: out = obj_output_dict["cond_frame_outputs"].get(frame_idx, None) if out is None: out = obj_output_dict["non_cond_frame_outputs"].get(frame_idx, None) # If the object doesn't appear in "output_dict_per_obj" either, we skip it # and leave its mask scores to the default scores (i.e. the NO_OBJ_SCORE # placeholder above) and set its object pointer to be a dummy pointer. if out is None: # Fill in dummy object pointers for those objects without any inputs or # tracking outcomes on this frame (only do it under `run_mem_encoder=True`, # i.e. when we need to build the memory for tracking). if run_mem_encoder: if empty_mask_ptr is None: empty_mask_ptr = self._get_empty_mask_ptr( inference_state, frame_idx ) # fill object pointer with a dummy pointer (based on an empty mask) consolidated_out["obj_ptr"][obj_idx : obj_idx + 1] = empty_mask_ptr continue # Add the temporary object output mask to consolidated output mask obj_mask = out["pred_masks"] consolidated_pred_masks = consolidated_out[consolidated_mask_key] if obj_mask.shape[-2:] == consolidated_pred_masks.shape[-2:]: consolidated_pred_masks[obj_idx : obj_idx + 1] = obj_mask else: # Resize first if temporary object mask has a different resolution resized_obj_mask = torch.nn.functional.interpolate( obj_mask, size=consolidated_pred_masks.shape[-2:], mode="bilinear", align_corners=False, ) consolidated_pred_masks[obj_idx : obj_idx + 1] = resized_obj_mask consolidated_out["obj_ptr"][obj_idx : obj_idx + 1] = out["obj_ptr"] # Optionally, apply non-overlapping constraints on the consolidated scores # and rerun the memory encoder if run_mem_encoder: device = inference_state["device"] high_res_masks = torch.nn.functional.interpolate( consolidated_out["pred_masks"].to(device, non_blocking=True), size=(self.image_size, self.image_size), mode="bilinear", align_corners=False, ) if self.non_overlap_masks_for_mem_enc: high_res_masks = self._apply_non_overlapping_constraints(high_res_masks) maskmem_features, maskmem_pos_enc = self._run_memory_encoder( inference_state=inference_state, frame_idx=frame_idx, batch_size=batch_size, high_res_masks=high_res_masks, is_mask_from_pts=True, # these frames are what the user interacted with ) consolidated_out["maskmem_features"] = maskmem_features consolidated_out["maskmem_pos_enc"] = maskmem_pos_enc return consolidated_out def _get_orig_video_res_output(self, inference_state, any_res_masks): """ Resize the object scores to the original video resolution (video_res_masks) and apply non-overlapping constraints for final output. """ device = inference_state["device"] video_H = inference_state["video_height"] video_W = inference_state["video_width"] any_res_masks = any_res_masks.to(device, non_blocking=True) if any_res_masks.shape[-2:] == (video_H, video_W): video_res_masks = any_res_masks else: video_res_masks = torch.nn.functional.interpolate( any_res_masks, size=(video_H, video_W), mode="bilinear", align_corners=False, ) if self.non_overlap_masks: video_res_masks = self._apply_non_overlapping_constraints(video_res_masks) return any_res_masks, video_res_masks def init_state( self, images ): """Initialize a inference state.""" inference_state = {} inference_state["images"] = images inference_state["num_frames"] = len(images) # whether to offload the video frames to CPU memory # turning on this option saves the GPU memory with only a very small overhead inference_state["offload_video_to_cpu"] = False # whether to offload the inference state to CPU memory # turning on this option saves the GPU memory at the cost of a lower tracking fps # (e.g. in a test case of 768x768 model, fps dropped from 27 to 24 when tracking one object # and from 24 to 21 when tracking two objects) inference_state["offload_state_to_cpu"] = False # the original video height and width, used for resizing final output scores inference_state["video_height"] = self.image_size inference_state["video_width"] = self.image_size inference_state["device"] = torch.device("cuda") inference_state["storage_device"] = torch.device("cuda") # inputs on each frame inference_state["point_inputs_per_obj"] = {} inference_state["mask_inputs_per_obj"] = {} # visual features on a small number of recently visited frames for quick interactions inference_state["cached_features"] = {} # values that don't change across frames (so we only need to hold one copy of them) inference_state["constants"] = {} # mapping between client-side object id and model-side object index inference_state["obj_id_to_idx"] = OrderedDict() inference_state["obj_idx_to_id"] = OrderedDict() inference_state["obj_ids"] = [] # A storage to hold the model's tracking results and states on each frame inference_state["output_dict"] = { "cond_frame_outputs": {}, # dict containing {frame_idx: } "non_cond_frame_outputs": {}, # dict containing {frame_idx: } } # Slice (view) of each object tracking results, sharing the same memory with "output_dict" inference_state["output_dict_per_obj"] = {} # A temporary storage to hold new outputs when user interact with a frame # to add clicks or mask (it's merged into "output_dict" before propagation starts) inference_state["temp_output_dict_per_obj"] = {} # Frames that already holds consolidated outputs from click or mask inputs # (we directly use their consolidated outputs during tracking) inference_state["consolidated_frame_inds"] = { "cond_frame_outputs": set(), # set containing frame indices "non_cond_frame_outputs": set(), # set containing frame indices } # metadata for each tracking frame (e.g. which direction it's tracked) inference_state["tracking_has_started"] = False inference_state["frames_already_tracked"] = {} return inference_state def add_language_embd( self, inference_state, frame_idx, obj_id, language_embd, inference=False, ): obj_idx = _obj_id_to_idx(inference_state, obj_id) is_init_cond_frame = frame_idx not in inference_state["frames_already_tracked"] # whether to track in reverse time order if is_init_cond_frame: reverse = False else: reverse = inference_state["frames_already_tracked"][frame_idx]["reverse"] obj_output_dict = inference_state["output_dict_per_obj"][obj_idx] obj_temp_output_dict = inference_state["temp_output_dict_per_obj"][obj_idx] # Add a frame to conditioning output if it's an initial conditioning frame or # if the model sees all frames receiving clicks/mask as conditioning frames. is_cond = is_init_cond_frame or self.add_all_frames_to_correct_as_cond storage_key = "cond_frame_outputs" if is_cond else "non_cond_frame_outputs" # Get any previously predicted mask logits on this object and feed it along with # the new clicks into the SAM mask decoder. prev_sam_mask_logits = None # lookup temporary output dict first, which contains the most recent output # (if not found, then lookup conditioning and non-conditioning frame output) prev_out = obj_temp_output_dict[storage_key].get(frame_idx) if prev_out is None: prev_out = obj_output_dict["cond_frame_outputs"].get(frame_idx) if prev_out is None: prev_out = obj_output_dict["non_cond_frame_outputs"].get(frame_idx) if prev_out is not None and prev_out["pred_masks"] is not None: prev_sam_mask_logits = prev_out["pred_masks"].cuda(non_blocking=True) # Clamp the scale of prev_sam_mask_logits to avoid rare numerical issues. prev_sam_mask_logits = torch.clamp(prev_sam_mask_logits, -32.0, 32.0) current_out, pred_mask_gpu = self._run_single_frame_inference( inference_state=inference_state, output_dict=obj_output_dict, # run on the slice of a single object frame_idx=frame_idx, batch_size=1, # run on the slice of a single object is_init_cond_frame=is_init_cond_frame, point_inputs=None, mask_inputs=None, reverse=reverse, # Skip the memory encoder when adding clicks or mask. We execute the memory encoder # at the beginning of `propagate_in_video` (after user finalize their clicks). This # allows us to enforce non-overlapping constraints on all objects before encoding # them into memory. run_mem_encoder=False, prev_sam_mask_logits=prev_sam_mask_logits, ## Extension: LLM prompt language_embd=language_embd, ) # Add the output to the output dict (to be used as future memory) obj_temp_output_dict[storage_key][frame_idx] = current_out # Resize the output mask to the original video resolution obj_ids = inference_state["obj_ids"] if inference: _consolidated_out = self._consolidate_temp_output_across_obj( inference_state, frame_idx, is_cond=is_cond, run_mem_encoder=False, consolidate_at_video_res=False, ) # _, video_res_masks = self._get_orig_video_res_output( # inference_state, consolidated_out["pred_masks_video_res"] # ) return frame_idx, obj_ids, pred_mask_gpu def _clear_non_cond_mem_around_input(self, inference_state, frame_idx): """ Remove the non-conditioning memory around the input frame. When users provide correction clicks, the surrounding frames' non-conditioning memories can still contain outdated object appearance information and could confuse the model. This method clears those non-conditioning memories surrounding the interacted frame to avoid giving the model both old and new information about the object. """ r = self.memory_temporal_stride_for_eval frame_idx_begin = frame_idx - r * self.num_maskmem frame_idx_end = frame_idx + r * self.num_maskmem output_dict = inference_state["output_dict"] non_cond_frame_outputs = output_dict["non_cond_frame_outputs"] for t in range(frame_idx_begin, frame_idx_end + 1): non_cond_frame_outputs.pop(t, None) for obj_output_dict in inference_state["output_dict_per_obj"].values(): obj_output_dict["non_cond_frame_outputs"].pop(t, None) def _run_memory_encoder( self, inference_state, frame_idx, batch_size, high_res_masks, is_mask_from_pts ): """ Run the memory encoder on `high_res_masks`. This is usually after applying non-overlapping constraints to object scores. Since their scores changed, their memory also need to be computed again with the memory encoder. """ # Retrieve correct image features _, _, current_vision_feats, _, feat_sizes = self._get_image_feature( inference_state, frame_idx, batch_size ) maskmem_features, maskmem_pos_enc = self._encode_new_memory( current_vision_feats=current_vision_feats, feat_sizes=feat_sizes, pred_masks_high_res=high_res_masks, is_mask_from_pts=is_mask_from_pts, ) # optionally offload the output to CPU memory to save GPU space storage_device = inference_state["storage_device"] maskmem_features = maskmem_features.to(torch.bfloat16) maskmem_features = maskmem_features.to(storage_device, non_blocking=True) # "maskmem_pos_enc" is the same across frames, so we only need to store one copy of it maskmem_pos_enc = _get_maskmem_pos_enc( inference_state, {"maskmem_pos_enc": maskmem_pos_enc} ) return maskmem_features, maskmem_pos_enc def _add_output_per_object( self, inference_state, frame_idx, current_out, storage_key ): """ Split a multi-object output into per-object output slices and add them into `output_dict_per_obj`. The resulting slices share the same tensor storage. """ maskmem_features = current_out["maskmem_features"] assert maskmem_features is None or isinstance(maskmem_features, torch.Tensor) maskmem_pos_enc = current_out["maskmem_pos_enc"] assert maskmem_pos_enc is None or isinstance(maskmem_pos_enc, list) output_dict_per_obj = inference_state["output_dict_per_obj"] for obj_idx, obj_output_dict in output_dict_per_obj.items(): obj_slice = slice(obj_idx, obj_idx + 1) obj_out = { "maskmem_features": None, "maskmem_pos_enc": None, "pred_masks": current_out["pred_masks"][obj_slice], "obj_ptr": current_out["obj_ptr"][obj_slice], } if maskmem_features is not None: obj_out["maskmem_features"] = maskmem_features[obj_slice] if maskmem_pos_enc is not None: obj_out["maskmem_pos_enc"] = [x[obj_slice] for x in maskmem_pos_enc] obj_output_dict[storage_key][frame_idx] = obj_out @torch.inference_mode() def propagate_in_video_preflight(self, inference_state): """Prepare inference_state and consolidate temporary outputs before tracking.""" # Tracking has started and we don't allow adding new objects until session is reset. inference_state["tracking_has_started"] = True batch_size = _get_obj_num(inference_state) # Consolidate per-object temporary outputs in "temp_output_dict_per_obj" and # add them into "output_dict". temp_output_dict_per_obj = inference_state["temp_output_dict_per_obj"] output_dict = inference_state["output_dict"] # "consolidated_frame_inds" contains indices of those frames where consolidated # temporary outputs have been added (either in this call or any previous calls # to `propagate_in_video_preflight`). consolidated_frame_inds = inference_state["consolidated_frame_inds"] for is_cond in [False, True]: # Separately consolidate conditioning and non-conditioning temp outptus storage_key = "cond_frame_outputs" if is_cond else "non_cond_frame_outputs" # Find all the frames that contain temporary outputs for any objects # (these should be the frames that have just received clicks for mask inputs # via `add_new_points` or `add_new_mask`) temp_frame_inds = set() for obj_temp_output_dict in temp_output_dict_per_obj.values(): temp_frame_inds.update(obj_temp_output_dict[storage_key].keys()) consolidated_frame_inds[storage_key].update(temp_frame_inds) # consolidate the temprary output across all objects on this frame for frame_idx in temp_frame_inds: consolidated_out = self._consolidate_temp_output_across_obj( inference_state, frame_idx, is_cond=is_cond, run_mem_encoder=True ) # merge them into "output_dict" and also create per-object slices output_dict[storage_key][frame_idx] = consolidated_out self._add_output_per_object( inference_state, frame_idx, consolidated_out, storage_key ) clear_non_cond_mem = self.clear_non_cond_mem_around_input and ( self.clear_non_cond_mem_for_multi_obj or batch_size <= 1 ) if clear_non_cond_mem: # clear non-conditioning memory of the surrounding frames self._clear_non_cond_mem_around_input(inference_state, frame_idx) # clear temporary outputs in `temp_output_dict_per_obj` for obj_temp_output_dict in temp_output_dict_per_obj.values(): obj_temp_output_dict[storage_key].clear() # edge case: if an output is added to "cond_frame_outputs", we remove any prior # output on the same frame in "non_cond_frame_outputs" for frame_idx in output_dict["cond_frame_outputs"]: output_dict["non_cond_frame_outputs"].pop(frame_idx, None) for obj_output_dict in inference_state["output_dict_per_obj"].values(): for frame_idx in obj_output_dict["cond_frame_outputs"]: obj_output_dict["non_cond_frame_outputs"].pop(frame_idx, None) for frame_idx in consolidated_frame_inds["cond_frame_outputs"]: assert frame_idx in output_dict["cond_frame_outputs"] consolidated_frame_inds["non_cond_frame_outputs"].discard(frame_idx) # Make sure that the frame indices in "consolidated_frame_inds" are exactly those frames # with either points or mask inputs (which should be true under a correct workflow). all_consolidated_frame_inds = ( consolidated_frame_inds["cond_frame_outputs"] | consolidated_frame_inds["non_cond_frame_outputs"] ) input_frames_inds = set() for point_inputs_per_frame in inference_state["point_inputs_per_obj"].values(): input_frames_inds.update(point_inputs_per_frame.keys()) for mask_inputs_per_frame in inference_state["mask_inputs_per_obj"].values(): input_frames_inds.update(mask_inputs_per_frame.keys()) # with language embd as input, there may not be point or box # assert all_consolidated_frame_inds == input_frames_inds @torch.inference_mode() def propagate_in_video( self, inference_state, start_frame_idx=None, max_frame_num_to_track=None, reverse=False, ): """Propagate the input points across frames to track in the entire video.""" self.propagate_in_video_preflight(inference_state) output_dict = inference_state["output_dict"] consolidated_frame_inds = inference_state["consolidated_frame_inds"] obj_ids = inference_state["obj_ids"] num_frames = inference_state["num_frames"] batch_size = _get_obj_num(inference_state) if len(output_dict["cond_frame_outputs"]) == 0: raise RuntimeError("No points are provided; please add points first") clear_non_cond_mem = self.clear_non_cond_mem_around_input and ( self.clear_non_cond_mem_for_multi_obj or batch_size <= 1 ) # set start index, end index, and processing order if start_frame_idx is None: # default: start from the earliest frame with input points start_frame_idx = min(output_dict["cond_frame_outputs"]) if max_frame_num_to_track is None: # default: track all the frames in the video max_frame_num_to_track = num_frames if reverse: end_frame_idx = max(start_frame_idx - max_frame_num_to_track, 0) if start_frame_idx > 0: processing_order = range(start_frame_idx, end_frame_idx - 1, -1) else: processing_order = [] # skip reverse tracking if starting from frame 0 else: end_frame_idx = min( start_frame_idx + max_frame_num_to_track, num_frames - 1 ) processing_order = range(start_frame_idx, end_frame_idx + 1) for frame_idx in tqdm(processing_order, desc="propagate in video", disable=True): # We skip those frames already in consolidated outputs (these are frames # that received input clicks or mask). Note that we cannot directly run # batched forward on them via `_run_single_frame_inference` because the # number of clicks on each object might be different. if frame_idx in consolidated_frame_inds["cond_frame_outputs"]: storage_key = "cond_frame_outputs" current_out = output_dict[storage_key][frame_idx] pred_masks = current_out["pred_masks"] if clear_non_cond_mem: # clear non-conditioning memory of the surrounding frames self._clear_non_cond_mem_around_input(inference_state, frame_idx) elif frame_idx in consolidated_frame_inds["non_cond_frame_outputs"]: storage_key = "non_cond_frame_outputs" current_out = output_dict[storage_key][frame_idx] pred_masks = current_out["pred_masks"] else: storage_key = "non_cond_frame_outputs" current_out, pred_masks = self._run_single_frame_inference( inference_state=inference_state, output_dict=output_dict, frame_idx=frame_idx, batch_size=batch_size, is_init_cond_frame=False, point_inputs=None, mask_inputs=None, reverse=reverse, run_mem_encoder=True, ) output_dict[storage_key][frame_idx] = current_out # Create slices of per-object outputs for subsequent interaction with each # individual object after tracking. self._add_output_per_object( inference_state, frame_idx, current_out, storage_key ) inference_state["frames_already_tracked"][frame_idx] = {"reverse": reverse} # Resize the output mask to the original video resolution (we directly use # the mask scores on GPU for output to avoid any CPU conversion in between) _, video_res_masks = self._get_orig_video_res_output( inference_state, pred_masks ) yield frame_idx, obj_ids, video_res_masks def fill_holes_in_mask_scores(mask, max_area): """ A post processor to fill small holes in mask scores with area under `max_area`. """ # Holes are those connected components in background with area <= self.max_area # (background regions are those with mask scores <= 0) assert max_area > 0, "max_area must be positive" labels, areas = get_connected_components(mask <= 0) is_hole = (labels > 0) & (areas <= max_area) # We fill holes with a small positive mask score (0.1) to change them to foreground. mask = torch.where(is_hole, 0.1, mask) return mask def get_connected_components(mask): """ Get the connected components (8-connectivity) of binary masks of shape (N, 1, H, W). Inputs: - mask: A binary mask tensor of shape (N, 1, H, W), where 1 is foreground and 0 is background. Outputs: - labels: A tensor of shape (N, 1, H, W) containing the connected component labels for foreground pixels and 0 for background pixels. - counts: A tensor of shape (N, 1, H, W) containing the area of the connected components for foreground pixels and 0 for background pixels. """ from torch.utils.cpp_extension import load os.system("wget https://github.com/facebookresearch/sam2/blob/main/sam2/csrc/connected_components.cu") get_connected_componnets = load( name="get_connected_componnets", sources=["./connected_components.cu"], verbose=True, extra_cuda_cflags=[ "-DCUDA_HAS_FP16=1", "-D__CUDA_NO_HALF_OPERATORS__", "-D__CUDA_NO_HALF_CONVERSIONS__", "-D__CUDA_NO_HALF2_OPERATORS__", ] ) return get_connected_componnets.get_connected_componnets(mask.to(torch.uint8).contiguous())