File size: 4,034 Bytes
ebf3100
e4306d5
 
ebf3100
 
e4306d5
af56e90
731afe4
 
af56e90
731afe4
 
ebf3100
c241a89
ebf3100
af56e90
 
670862b
 
af56e90
 
 
 
 
 
670862b
 
 
 
 
 
 
e978c00
 
 
 
 
 
 
670862b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ebf3100
 
 
 
 
 
 
e4306d5
ebf3100
e4306d5
 
ebf3100
e978c00
ebf3100
e978c00
ebf3100
e978c00
ebf3100
e978c00
ebf3100
e978c00
ebf3100
 
 
 
 
 
 
 
 
 
fcedf11
ebf3100
 
 
 
 
 
 
fcedf11
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ebf3100
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
---
language:
- bg
license: apache-2.0
tags:
- automatic-speech-recognition
- bg
- generated_from_trainer
- hf-asr-leaderboard
- model_for_talk
- mozilla-foundation/common_voice_8_0
- robust-speech-event
datasets:
- mozilla-foundation/common_voice_8_0
model-index:
- name: wav2vec2-large-xls-r-300m-bg-v1
  results:
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: Common Voice 8
      type: mozilla-foundation/common_voice_8_0
      args: bg
    metrics:
    - name: Test WER
      type: wer
      value: 0.4709579127785184
    - name: Test CER
      type: cer
      value: 0.10205125354383235
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: Robust Speech Event - Dev Data
      type: speech-recognition-community-v2/dev_data
      args: bg
    metrics:
    - name: Test WER
      type: wer
      value: 0.7053128872366791
    - name: Test CER
      type: cer
      value: 0.210804311998487
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: Robust Speech Event - Test Data
      type: speech-recognition-community-v2/eval_data
      args: bg
    metrics:
    - name: Test WER
      type: wer
      value: 72.6
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# 

This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - BG dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5197
- Wer: 0.4689

### Evaluation Commands

1. To evaluate on mozilla-foundation/common_voice_8_0 with test split

python eval.py --model_id DrishtiSharma/wav2vec2-large-xls-r-300m-bg-v1 --dataset mozilla-foundation/common_voice_8_0 --config bg --split test --log_outputs

2. To evaluate on speech-recognition-community-v2/dev_data

python eval.py --model_id DrishtiSharma/wav2vec2-large-xls-r-300m-bg-v1 --dataset speech-recognition-community-v2/dev_data --config bg --split validation --chunk_length_s 10 --stride_length_s 1

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 7e-05
- train_batch_size: 32
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 2000
- num_epochs: 50.0
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Wer    |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 4.3711        | 2.61  | 300  | 4.3122          | 1.0    |
| 3.1653        | 5.22  | 600  | 3.1156          | 1.0    |
| 2.8904        | 7.83  | 900  | 2.8421          | 0.9918 |
| 0.9207        | 10.43 | 1200 | 0.9895          | 0.8689 |
| 0.6384        | 13.04 | 1500 | 0.6994          | 0.7700 |
| 0.5215        | 15.65 | 1800 | 0.5628          | 0.6443 |
| 0.4573        | 18.26 | 2100 | 0.5316          | 0.6174 |
| 0.3875        | 20.87 | 2400 | 0.4932          | 0.5779 |
| 0.3562        | 23.48 | 2700 | 0.4972          | 0.5475 |
| 0.3218        | 26.09 | 3000 | 0.4895          | 0.5219 |
| 0.2954        | 28.7  | 3300 | 0.5226          | 0.5192 |
| 0.287         | 31.3  | 3600 | 0.4957          | 0.5146 |
| 0.2587        | 33.91 | 3900 | 0.4944          | 0.4893 |
| 0.2496        | 36.52 | 4200 | 0.4976          | 0.4895 |
| 0.2365        | 39.13 | 4500 | 0.5185          | 0.4819 |
| 0.2264        | 41.74 | 4800 | 0.5152          | 0.4776 |
| 0.2224        | 44.35 | 5100 | 0.5031          | 0.4746 |
| 0.2096        | 46.96 | 5400 | 0.5062          | 0.4708 |
| 0.2038        | 49.57 | 5700 | 0.5217          | 0.4698 |


### Framework versions

- Transformers 4.17.0.dev0
- Pytorch 1.10.2+cu102
- Datasets 1.18.2.dev0
- Tokenizers 0.11.0