--- library_name: peft license: apache-2.0 base_model: answerdotai/ModernBERT-base tags: - generated_from_trainer model-index: - name: aged-bat-118 results: [] --- # aged-bat-118 This model is a fine-tuned version of [answerdotai/ModernBERT-base](https://huggingface.co/answerdotai/ModernBERT-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6719 - Hamming Loss: 0.4211 - Zero One Loss: 0.995 - Jaccard Score: 0.8984 - Hamming Loss Optimised: 0.1154 - Hamming Loss Threshold: 0.7245 - Zero One Loss Optimised: 0.97 - Zero One Loss Threshold: 0.5836 - Jaccard Score Optimised: 0.8868 - Jaccard Score Threshold: 0.2939 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 6.873958576260693e-06 - train_batch_size: 32 - eval_batch_size: 32 - seed: 2024 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9097766016186105,0.8847932912441592) and epsilon=1e-07 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Hamming Loss | Zero One Loss | Jaccard Score | Hamming Loss Optimised | Hamming Loss Threshold | Zero One Loss Optimised | Zero One Loss Threshold | Jaccard Score Optimised | Jaccard Score Threshold | |:-------------:|:-----:|:----:|:---------------:|:------------:|:-------------:|:-------------:|:----------------------:|:----------------------:|:-----------------------:|:-----------------------:|:-----------------------:|:-----------------------:| | No log | 1.0 | 100 | 0.6856 | 0.4451 | 0.9975 | 0.8990 | 0.113 | 0.8060 | 0.9738 | 0.6291 | 0.8871 | 0.2985 | | No log | 2.0 | 200 | 0.6719 | 0.4211 | 0.995 | 0.8984 | 0.1154 | 0.7245 | 0.97 | 0.5836 | 0.8868 | 0.2939 | ### Framework versions - PEFT 0.13.2 - Transformers 4.48.0.dev0 - Pytorch 2.5.1+cu124 - Datasets 3.1.0 - Tokenizers 0.21.0