--- library_name: peft license: apache-2.0 base_model: answerdotai/ModernBERT-base tags: - generated_from_trainer model-index: - name: popular-goose-411 results: [] --- # popular-goose-411 This model is a fine-tuned version of [answerdotai/ModernBERT-base](https://huggingface.co/answerdotai/ModernBERT-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6311 - Hamming Loss: 0.3421 - Zero One Loss: 0.9988 - Jaccard Score: 0.8636 - Hamming Loss Optimised: 0.1124 - Hamming Loss Threshold: 0.8318 - Zero One Loss Optimised: 0.9275 - Zero One Loss Threshold: 0.6512 - Jaccard Score Optimised: 0.8578 - Jaccard Score Threshold: 0.5254 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2.763618769712032e-06 - train_batch_size: 32 - eval_batch_size: 32 - seed: 2024 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9266629421127196,0.9390598859734118) and epsilon=1e-07 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Hamming Loss | Zero One Loss | Jaccard Score | Hamming Loss Optimised | Hamming Loss Threshold | Zero One Loss Optimised | Zero One Loss Threshold | Jaccard Score Optimised | Jaccard Score Threshold | |:-------------:|:-----:|:----:|:---------------:|:------------:|:-------------:|:-------------:|:----------------------:|:----------------------:|:-----------------------:|:-----------------------:|:-----------------------:|:-----------------------:| | No log | 1.0 | 100 | 0.6402 | 0.3553 | 0.9988 | 0.8655 | 0.1123 | 0.8748 | 0.9300 | 0.6583 | 0.8587 | 0.5286 | | No log | 2.0 | 200 | 0.6311 | 0.3421 | 0.9988 | 0.8636 | 0.1124 | 0.8318 | 0.9275 | 0.6512 | 0.8578 | 0.5254 | ### Framework versions - PEFT 0.13.2 - Transformers 4.48.0.dev0 - Pytorch 2.5.1+cu124 - Datasets 3.1.0 - Tokenizers 0.21.0