--- library_name: transformers license: apache-2.0 base_model: answerdotai/ModernBERT-base tags: - generated_from_trainer model-index: - name: popular-newt-164 results: [] --- # popular-newt-164 This model is a fine-tuned version of [answerdotai/ModernBERT-base](https://huggingface.co/answerdotai/ModernBERT-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1634 - Hamming Loss: 0.0581 - Zero One Loss: 0.4287 - Jaccard Score: 0.3757 - Hamming Loss Optimised: 0.0583 - Hamming Loss Threshold: 0.5931 - Zero One Loss Optimised: 0.4150 - Zero One Loss Threshold: 0.3577 - Jaccard Score Optimised: 0.3293 - Jaccard Score Threshold: 0.2227 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3.220762197755578e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 2024 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9866282790391318,0.8034758511516535) and epsilon=1e-07 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Hamming Loss | Zero One Loss | Jaccard Score | Hamming Loss Optimised | Hamming Loss Threshold | Zero One Loss Optimised | Zero One Loss Threshold | Jaccard Score Optimised | Jaccard Score Threshold | |:-------------:|:-----:|:----:|:---------------:|:------------:|:-------------:|:-------------:|:----------------------:|:----------------------:|:-----------------------:|:-----------------------:|:-----------------------:|:-----------------------:| | No log | 1.0 | 100 | 0.1844 | 0.0681 | 0.5375 | 0.5025 | 0.0676 | 0.5092 | 0.5025 | 0.4265 | 0.4224 | 0.2570 | | No log | 2.0 | 200 | 0.1663 | 0.0633 | 0.4387 | 0.3643 | 0.0587 | 0.6431 | 0.4375 | 0.4758 | 0.3283 | 0.3124 | | No log | 3.0 | 300 | 0.1634 | 0.0581 | 0.4287 | 0.3757 | 0.0583 | 0.5931 | 0.4150 | 0.3577 | 0.3293 | 0.2227 | ### Framework versions - Transformers 4.48.0.dev0 - Pytorch 2.5.1+cu124 - Datasets 3.1.0 - Tokenizers 0.21.0