File size: 5,438 Bytes
5df3bc6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
---
license: apache-2.0
base_model: h2oai/h2o-danube3-500m-base
tags:
- axolotl
- generated_from_trainer
model-index:
- name: clite7-500m-test-ckpts
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>

axolotl version: `0.4.1`
```yaml
# Weights and Biases logging config
wandb_project: clite
wandb_entity:
wandb_watch:
wandb_name: v7
wandb_log_model:

# Model architecture config
base_model: h2oai/h2o-danube3-500m-base
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer
chat_template: anthropic

# Hugging Face saving config
hub_model_id:
hub_strategy:
push_dataset_to_hub:
hf_use_auth_token:

# Model checkpointing config
output_dir: ./lora-out
resume_from_checkpoint:
save_steps:
saves_per_epoch: 5
save_safetensors: true
save_total_limit: 2

# Mixed precision training config
bf16: true
fp16: false
tf32: false

# Model loading config
load_in_8bit: false
load_in_4bit: false
strict: false

# Sequence config
sequence_len: 8192
s2_attention: false
sample_packing: true
eval_sample_packing: true
pad_to_sequence_len: true
train_on_inputs: true
group_by_length: false

# Dataset config
datasets:
    - path: kalomaze/Opus_Instruct_3k
      type: chat_template
val_set_size: 0.1
evaluation_strategy:
eval_steps:
evals_per_epoch: 10
test_datasets:
dataset_prepared_path: ./last-preped-dataset
shuffle_merged_datasets: true

# Training hyperparameters
num_epochs: 3
gradient_accumulation_steps: 2
micro_batch_size: 8
eval_batch_size: 8
warmup_steps: 10
optimizer: paged_adamw_8bit
lr_scheduler: cosine
learning_rate: 0.00004
cosine_min_lr_ratio: 0.1
weight_decay: 0.1
max_grad_norm: 1
logging_steps: 1

# Model optimization
gradient_checkpointing: unsloth
xformers_attention: false
flash_attention: true
sdp_attention: false
unsloth_cross_entropy_loss: false
unsloth_lora_mlp: false
unsloth_lora_qkv: false
unsloth_lora_o: false

# Loss monitoring config
early_stopping_patience: false
loss_watchdog_threshold: 100.0
loss_watchdog_patience: 3

# Debug config
debug: true
seed: 02496

# DeepSpeed and FSDP config
deepspeed:
fsdp:
fsdp_config:

# Token config
special_tokens:
tokens: # these are delimiters
  - "<EOT>"

# Checkpoint backing up
hub_model_id: Fizzarolli/clite7-500m-test-ckpts
hub_strategy: all_checkpoints

```

</details><br>

[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/ruthenic/clite/runs/diil6zl9)
# clite7-500m-test-ckpts

This model is a fine-tuned version of [h2oai/h2o-danube3-500m-base](https://huggingface.co/h2oai/h2o-danube3-500m-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.3765

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 4e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 2496
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 3

### Training results

| Training Loss | Epoch  | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 2.9517        | 0.0952 | 1    | 3.7616          |
| 2.9796        | 0.1905 | 2    | 3.6462          |
| 2.9632        | 0.2857 | 3    | 3.3357          |
| 2.6639        | 0.3810 | 4    | 3.0408          |
| 2.5048        | 0.4762 | 5    | 2.7322          |
| 2.4911        | 0.5714 | 6    | 2.5094          |
| 2.1291        | 0.6667 | 7    | 2.3554          |
| 4.8452        | 0.7619 | 8    | 1.6418          |
| 1.6902        | 0.8571 | 9    | 1.6067          |
| 1.6166        | 0.9524 | 10   | 1.5581          |
| 1.5985        | 1.0476 | 11   | 1.5162          |
| 1.5001        | 1.0476 | 12   | 1.4847          |
| 1.4679        | 1.1429 | 13   | 1.4601          |
| 1.4981        | 1.2381 | 14   | 1.4440          |
| 1.4864        | 1.3333 | 15   | 1.4293          |
| 1.4895        | 1.4286 | 16   | 1.4174          |
| 1.4653        | 1.5238 | 17   | 1.4061          |
| 1.4447        | 1.6190 | 18   | 1.3988          |
| 1.4492        | 1.7143 | 19   | 1.3937          |
| 1.4244        | 1.8095 | 20   | 1.3896          |
| 1.4319        | 1.9048 | 21   | 1.3858          |
| 1.4238        | 2.0    | 22   | 1.3830          |
| 1.4725        | 2.0952 | 23   | 1.3810          |
| 1.3862        | 2.0952 | 24   | 1.3794          |
| 1.3526        | 2.1905 | 25   | 1.3783          |
| 1.4134        | 2.2857 | 26   | 1.3776          |
| 1.3909        | 2.3810 | 27   | 1.3771          |
| 1.4016        | 2.4762 | 28   | 1.3769          |
| 1.3494        | 2.5714 | 29   | 1.3766          |
| 1.3783        | 2.6667 | 30   | 1.3765          |


### Framework versions

- Transformers 4.42.4
- Pytorch 2.1.2+cu118
- Datasets 2.19.1
- Tokenizers 0.19.1