File size: 5,438 Bytes
5df3bc6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 |
---
license: apache-2.0
base_model: h2oai/h2o-danube3-500m-base
tags:
- axolotl
- generated_from_trainer
model-index:
- name: clite7-500m-test-ckpts
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.1`
```yaml
# Weights and Biases logging config
wandb_project: clite
wandb_entity:
wandb_watch:
wandb_name: v7
wandb_log_model:
# Model architecture config
base_model: h2oai/h2o-danube3-500m-base
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer
chat_template: anthropic
# Hugging Face saving config
hub_model_id:
hub_strategy:
push_dataset_to_hub:
hf_use_auth_token:
# Model checkpointing config
output_dir: ./lora-out
resume_from_checkpoint:
save_steps:
saves_per_epoch: 5
save_safetensors: true
save_total_limit: 2
# Mixed precision training config
bf16: true
fp16: false
tf32: false
# Model loading config
load_in_8bit: false
load_in_4bit: false
strict: false
# Sequence config
sequence_len: 8192
s2_attention: false
sample_packing: true
eval_sample_packing: true
pad_to_sequence_len: true
train_on_inputs: true
group_by_length: false
# Dataset config
datasets:
- path: kalomaze/Opus_Instruct_3k
type: chat_template
val_set_size: 0.1
evaluation_strategy:
eval_steps:
evals_per_epoch: 10
test_datasets:
dataset_prepared_path: ./last-preped-dataset
shuffle_merged_datasets: true
# Training hyperparameters
num_epochs: 3
gradient_accumulation_steps: 2
micro_batch_size: 8
eval_batch_size: 8
warmup_steps: 10
optimizer: paged_adamw_8bit
lr_scheduler: cosine
learning_rate: 0.00004
cosine_min_lr_ratio: 0.1
weight_decay: 0.1
max_grad_norm: 1
logging_steps: 1
# Model optimization
gradient_checkpointing: unsloth
xformers_attention: false
flash_attention: true
sdp_attention: false
unsloth_cross_entropy_loss: false
unsloth_lora_mlp: false
unsloth_lora_qkv: false
unsloth_lora_o: false
# Loss monitoring config
early_stopping_patience: false
loss_watchdog_threshold: 100.0
loss_watchdog_patience: 3
# Debug config
debug: true
seed: 02496
# DeepSpeed and FSDP config
deepspeed:
fsdp:
fsdp_config:
# Token config
special_tokens:
tokens: # these are delimiters
- "<EOT>"
# Checkpoint backing up
hub_model_id: Fizzarolli/clite7-500m-test-ckpts
hub_strategy: all_checkpoints
```
</details><br>
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/ruthenic/clite/runs/diil6zl9)
# clite7-500m-test-ckpts
This model is a fine-tuned version of [h2oai/h2o-danube3-500m-base](https://huggingface.co/h2oai/h2o-danube3-500m-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.3765
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 4e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 2496
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 2.9517 | 0.0952 | 1 | 3.7616 |
| 2.9796 | 0.1905 | 2 | 3.6462 |
| 2.9632 | 0.2857 | 3 | 3.3357 |
| 2.6639 | 0.3810 | 4 | 3.0408 |
| 2.5048 | 0.4762 | 5 | 2.7322 |
| 2.4911 | 0.5714 | 6 | 2.5094 |
| 2.1291 | 0.6667 | 7 | 2.3554 |
| 4.8452 | 0.7619 | 8 | 1.6418 |
| 1.6902 | 0.8571 | 9 | 1.6067 |
| 1.6166 | 0.9524 | 10 | 1.5581 |
| 1.5985 | 1.0476 | 11 | 1.5162 |
| 1.5001 | 1.0476 | 12 | 1.4847 |
| 1.4679 | 1.1429 | 13 | 1.4601 |
| 1.4981 | 1.2381 | 14 | 1.4440 |
| 1.4864 | 1.3333 | 15 | 1.4293 |
| 1.4895 | 1.4286 | 16 | 1.4174 |
| 1.4653 | 1.5238 | 17 | 1.4061 |
| 1.4447 | 1.6190 | 18 | 1.3988 |
| 1.4492 | 1.7143 | 19 | 1.3937 |
| 1.4244 | 1.8095 | 20 | 1.3896 |
| 1.4319 | 1.9048 | 21 | 1.3858 |
| 1.4238 | 2.0 | 22 | 1.3830 |
| 1.4725 | 2.0952 | 23 | 1.3810 |
| 1.3862 | 2.0952 | 24 | 1.3794 |
| 1.3526 | 2.1905 | 25 | 1.3783 |
| 1.4134 | 2.2857 | 26 | 1.3776 |
| 1.3909 | 2.3810 | 27 | 1.3771 |
| 1.4016 | 2.4762 | 28 | 1.3769 |
| 1.3494 | 2.5714 | 29 | 1.3766 |
| 1.3783 | 2.6667 | 30 | 1.3765 |
### Framework versions
- Transformers 4.42.4
- Pytorch 2.1.2+cu118
- Datasets 2.19.1
- Tokenizers 0.19.1
|