---
license: mit
language:
- en
library_name: diffusers
---
# Arc2Face Model Card
[**Project Page**](https://arc2face.github.io/) **|** [**Paper (ArXiv)**](https://arxiv.org/abs/2403.11641) **|** [**Code**](https://github.com/foivospar/Arc2Face) **|** [🤗 **Gradio demo**](https://huggingface.co/spaces/FoivosPar/Arc2Face)
## Introduction
Arc2Face is an ID-conditioned face model, that can generate diverse, ID-consistent photos of a person given only its ArcFace ID-embedding.
It is trained on a restored version of the WebFace42M face recognition database, and is further fine-tuned on FFHQ and CelebA-HQ.
## Model Details
It consists of 2 components:
- encoder, a finetuned CLIP ViT-L/14 model
- arc2face, a finetuned UNet model
both of which are fine-tuned from [runwayml/stable-diffusion-v1-5](https://huggingface.co/runwayml/stable-diffusion-v1-5).
The encoder is tailored for projecting ID-embeddings to the CLIP latent space.
Arc2Face adapts the pre-trained backbone to the task of ID-to-face generation, conditioned solely on ID vectors.
## ControlNet (pose)
We also provide a ControlNet model trained on top of Arc2Face for pose control.
## Usage
The models can be downloaded directly from this repository or using python:
```python
from huggingface_hub import hf_hub_download
hf_hub_download(repo_id="FoivosPar/Arc2Face", filename="arc2face/config.json", local_dir="./models")
hf_hub_download(repo_id="FoivosPar/Arc2Face", filename="arc2face/diffusion_pytorch_model.safetensors", local_dir="./models")
hf_hub_download(repo_id="FoivosPar/Arc2Face", filename="encoder/config.json", local_dir="./models")
hf_hub_download(repo_id="FoivosPar/Arc2Face", filename="encoder/pytorch_model.bin", local_dir="./models")
hf_hub_download(repo_id="FoivosPar/Arc2Face", filename="controlnet/config.json", local_dir="./models")
hf_hub_download(repo_id="FoivosPar/Arc2Face", filename="controlnet/diffusion_pytorch_model.safetensors", local_dir="./models")
```
Please check our [GitHub repository](https://github.com/foivospar/Arc2Face) for complete inference instructions.
## Limitations and Bias
- Only one person per image can be generated.
- Poses are constrained to the frontal hemisphere, similar to FFHQ images.
- The model may reflect the biases of the training data or the ID encoder.
## Citation
**BibTeX:**
```bibtex
@inproceedings{paraperas2024arc2face,
title={Arc2Face: A Foundation Model for ID-Consistent Human Faces},
author={Paraperas Papantoniou, Foivos and Lattas, Alexandros and Moschoglou, Stylianos and Deng, Jiankang and Kainz, Bernhard and Zafeiriou, Stefanos},
booktitle={Proceedings of the European Conference on Computer Vision (ECCV)},
year={2024}
}
```