--- library_name: transformers license: apache-2.0 base_model: bert-base-uncased tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: bert-base-uncased-finetuned-ner-biobert results: [] --- # bert-base-uncased-finetuned-ner-biobert This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1078 - Precision: 0.9466 - Recall: 0.9706 - F1: 0.9585 - Accuracy: 0.9788 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.4602 | 1.0 | 612 | 0.1189 | 0.9232 | 0.9431 | 0.9330 | 0.9683 | | 0.1394 | 2.0 | 1224 | 0.1071 | 0.9236 | 0.9702 | 0.9463 | 0.9728 | | 0.0939 | 3.0 | 1836 | 0.0952 | 0.9445 | 0.9652 | 0.9547 | 0.9774 | | 0.0759 | 4.0 | 2448 | 0.0968 | 0.9417 | 0.9680 | 0.9547 | 0.9770 | | 0.0549 | 5.0 | 3060 | 0.0981 | 0.9448 | 0.9670 | 0.9558 | 0.9773 | | 0.0481 | 6.0 | 3672 | 0.1025 | 0.9416 | 0.9706 | 0.9559 | 0.9774 | | 0.0401 | 7.0 | 4284 | 0.1045 | 0.9407 | 0.9705 | 0.9554 | 0.9771 | | 0.0387 | 8.0 | 4896 | 0.1042 | 0.9455 | 0.9705 | 0.9578 | 0.9784 | | 0.0301 | 9.0 | 5508 | 0.1059 | 0.9475 | 0.9704 | 0.9588 | 0.9790 | | 0.0286 | 10.0 | 6120 | 0.1078 | 0.9466 | 0.9706 | 0.9585 | 0.9788 | ### Framework versions - Transformers 4.45.1 - Pytorch 2.4.0 - Datasets 3.0.1 - Tokenizers 0.20.0