Add pipeline tag (#1)
Browse files- Add pipeline tag (e40d08a44399d83c7db779f22f76c7ab2958bc59)
Co-authored-by: Niels Rogge <[email protected]>
README.md
CHANGED
@@ -1,138 +1,139 @@
|
|
1 |
-
---
|
2 |
-
license: gpl-3.0
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
[![
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
>
|
18 |
-
> - **
|
19 |
-
> - **
|
20 |
-
> - **
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
<
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
<
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
conda
|
59 |
-
|
60 |
-
pip install -e
|
61 |
-
pip install
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
--
|
72 |
-
--
|
73 |
-
--
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
--
|
83 |
-
--
|
84 |
-
--
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
<
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
<
|
100 |
-
<
|
101 |
-
<
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
<
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
<
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
<
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
}
|
136 |
-
|
137 |
-
|
|
|
138 |
If you have any questions, please feel free to submit an issue or contact `[email protected]`.
|
|
|
1 |
+
---
|
2 |
+
license: gpl-3.0
|
3 |
+
pipeline_tag: image-text-to-text
|
4 |
+
---
|
5 |
+
# LLaVA-Mini: Efficient Image and Video Large Multimodal Models with One Vision Token
|
6 |
+
|
7 |
+
[![arXiv](https://img.shields.io/badge/arXiv-2501.03895-b31b1b.svg?logo=arXiv)](https://arxiv.org/abs/2501.03895)
|
8 |
+
[![model](https://img.shields.io/badge/%F0%9F%A4%97%20huggingface%20-llava--mini--llama--3.1--8b-orange.svg)](https://huggingface.co/ICTNLP/llava-mini-llama-3.1-8b)
|
9 |
+
|
10 |
+
> **[Shaolei Zhang](https://zhangshaolei1998.github.io/), [Qingkai Fang](https://fangqingkai.github.io/), [Zhe Yang](https://nlp.ict.ac.cn/yjdw/xs/ssyjs/202210/t20221020_52708.html), [Yang Feng*](https://people.ucas.edu.cn/~yangfeng?language=en)**
|
11 |
+
|
12 |
+
|
13 |
+
LLaVA-Mini is a unified large multimodal model that can support the understanding of images, high-resolution images, and videos in an efficient manner. Guided by the interpretability within LMM, LLaVA-Mini significantly improves efficiency while ensuring vision capabilities. [Code](https://github.com/ictnlp/LLaVA-Mini), [model](https://huggingface.co/ICTNLP/llava-mini-llama-3.1-8b) and [demo](https://github.com/ictnlp/LLaVA-Mini#-demo) of LLaVA-Mini are available now!
|
14 |
+
|
15 |
+
Refer to our [GitHub repo]((https://github.com/ictnlp/LLaVA-Mini)) for details of LLaVA-Mini!
|
16 |
+
|
17 |
+
> [!Note]
|
18 |
+
> LLaVA-Mini only requires **1 token** to represent each image, which improves the efficiency of image and video understanding, including:
|
19 |
+
> - **Computational effort**: 77% FLOPs reduction
|
20 |
+
> - **Response latency**: reduce from 100 milliseconds to 40 milliseconds
|
21 |
+
> - **VRAM memory usage**: reduce from 360 MB/image to 0.6 MB/image, support 3-hour video processing
|
22 |
+
|
23 |
+
|
24 |
+
<p align="center" width="100%">
|
25 |
+
<img src="./assets/performance.png" alt="performance" style="width: 100%; min-width: 300px; display: block; margin: auto;">
|
26 |
+
</p>
|
27 |
+
|
28 |
+
💡**Highlight**:
|
29 |
+
1. **Good Performance**: LLaVA-Mini achieves performance comparable to LLaVA-v1.5 while using only 1 vision token instead of 576 (compression rate of 0.17%).
|
30 |
+
2. **High Efficiency**: LLaVA-Mini can reduce FLOPs by 77%, deliver low-latency responses within 40 milliseconds, and process over 10,000 frames of video on the GPU hardware with 24GB of memory.
|
31 |
+
3. **Insights**: To develop LLaVA-Mini, which reduces vision tokens while maintaining visual understanding, we conduct a preliminary analysis to explore how large multimodal models (LMMs) process visual tokens. Please refer to our [paper](https://arxiv.org/pdf/2501.03895) for a detailed analysis and our conclusions.
|
32 |
+
|
33 |
+
## 🖥 Demo
|
34 |
+
<p align="center" width="100%">
|
35 |
+
<img src="./assets/llava_mini.gif" alt="llava_mini" style="width: 100%; min-width: 300px; display: block; margin: auto;">
|
36 |
+
</p>
|
37 |
+
|
38 |
+
- Download LLaVA-Mini model from [here](https://huggingface.co/ICTNLP/llava-mini-llama-3.1-8b).
|
39 |
+
|
40 |
+
- Run these scripts and Interact with LLaVA-Mini in your browser:
|
41 |
+
|
42 |
+
```bash
|
43 |
+
# Launch a controller
|
44 |
+
python -m llavamini.serve.controller --host 0.0.0.0 --port 10000 &
|
45 |
+
|
46 |
+
# Build the API of LLaVA-Mini
|
47 |
+
CUDA_VISIBLE_DEVICES=0 python -m llavamini.serve.model_worker --host 0.0.0.0 --controller http://localhost:10000 --port 40000 --worker http://localhost:40000 --model-path ICTNLP/llava-mini-llama-3.1-8b --model-name llava-mini &
|
48 |
+
|
49 |
+
# Start the interactive interface
|
50 |
+
python -m llavamini.serve.gradio_web_server --controller http://localhost:10000 --model-list-mode reload --port 7860
|
51 |
+
```
|
52 |
+
|
53 |
+
## 🔥 Quick Start
|
54 |
+
### Requirements
|
55 |
+
- Install packages:
|
56 |
+
|
57 |
+
```bash
|
58 |
+
conda create -n llavamini python=3.10 -y
|
59 |
+
conda activate llavamini
|
60 |
+
pip install -e .
|
61 |
+
pip install -e ".[train]"
|
62 |
+
pip install flash-attn --no-build-isolation
|
63 |
+
```
|
64 |
+
|
65 |
+
### Command Interaction
|
66 |
+
- Image understanding, using `--image-file `:
|
67 |
+
|
68 |
+
```bash
|
69 |
+
# Image Understanding
|
70 |
+
CUDA_VISIBLE_DEVICES=0 python llavamini/eval/run_llava_mini.py \
|
71 |
+
--model-path ICTNLP/llava-mini-llama-3.1-8b \
|
72 |
+
--image-file llavamini/serve/examples/baby_cake.png \
|
73 |
+
--conv-mode llava_llama_3_1 --model-name "llava-mini" \
|
74 |
+
--query "What's the text on the cake?"
|
75 |
+
```
|
76 |
+
|
77 |
+
- Video understanding, using `--video-file `:
|
78 |
+
|
79 |
+
```bash
|
80 |
+
# Video Understanding
|
81 |
+
CUDA_VISIBLE_DEVICES=0 python llavamini/eval/run_llava_mini.py \
|
82 |
+
--model-path ICTNLP/llava-mini-llama-3.1-8b \
|
83 |
+
--video-file llavamini/serve/examples/fifa.mp4 \
|
84 |
+
--conv-mode llava_llama_3_1 --model-name "llava-mini" \
|
85 |
+
--query "What happened in this video?"
|
86 |
+
```
|
87 |
+
|
88 |
+
### Reproduction and Evaluation
|
89 |
+
|
90 |
+
- Refer to [Evaluation.md](docs/Evaluation.md) for the evaluation of LLaVA-Mini on image/video benchmarks.
|
91 |
+
|
92 |
+
### Cases
|
93 |
+
- LLaVA-Mini achieves high-quality image understanding and video understanding.
|
94 |
+
|
95 |
+
<p align="center" width="100%">
|
96 |
+
<img src="./assets/case1.png" alt="case1" style="width: 100%; min-width: 300px; display: block; margin: auto;">
|
97 |
+
</p>
|
98 |
+
|
99 |
+
<details>
|
100 |
+
<summary>More cases</summary>
|
101 |
+
<p align="center" width="100%">
|
102 |
+
<img src="./assets/case2.png" alt="case2" style="width: 100%; min-width: 300px; display: block; margin: auto;">
|
103 |
+
</p>
|
104 |
+
|
105 |
+
<p align="center" width="100%">
|
106 |
+
<img src="./assets/case3.png" alt="case3" style="width: 100%; min-width: 300px; display: block; margin: auto;">
|
107 |
+
</p>
|
108 |
+
|
109 |
+
<p align="center" width="100%">
|
110 |
+
<img src="./assets/case4.png" alt="case4" style="width: 100%; min-width: 300px; display: block; margin: auto;">
|
111 |
+
</p>
|
112 |
+
|
113 |
+
</details>
|
114 |
+
|
115 |
+
- LLaVA-Mini dynamically compresses image to capture important visual information (brighter areas are more heavily weighted during compression).
|
116 |
+
|
117 |
+
<p align="center" width="100%">
|
118 |
+
<img src="./assets/compression.png" alt="compression" style="width: 100%; min-width: 300px; display: block; margin: auto;">
|
119 |
+
</p>
|
120 |
+
|
121 |
+
|
122 |
+
|
123 |
+
## 🖋Citation
|
124 |
+
|
125 |
+
If this repository is useful for you, please cite as:
|
126 |
+
|
127 |
+
```
|
128 |
+
@misc{llavamini,
|
129 |
+
title={LLaVA-Mini: Efficient Image and Video Large Multimodal Models with One Vision Token},
|
130 |
+
author={Shaolei Zhang and Qingkai Fang and Zhe Yang and Yang Feng},
|
131 |
+
year={2025},
|
132 |
+
eprint={2501.03895},
|
133 |
+
archivePrefix={arXiv},
|
134 |
+
primaryClass={cs.CV},
|
135 |
+
url={https://arxiv.org/abs/2501.03895},
|
136 |
+
}
|
137 |
+
```
|
138 |
+
|
139 |
If you have any questions, please feel free to submit an issue or contact `[email protected]`.
|