--- language: - en license: mit tags: - generated_from_trainer datasets: - glue metrics: - accuracy - f1 model-index: - name: deberta-v3-base-mrpc results: - task: name: Text Classification type: text-classification dataset: name: GLUE MRPC type: glue config: mrpc split: validation args: mrpc metrics: - name: Accuracy type: accuracy value: 0.8946078431372549 - name: F1 type: f1 value: 0.9244288224956063 --- # deberta-v3-base-mrpc This model is a fine-tuned version of [microsoft/deberta-v3-base](https://huggingface.co/microsoft/deberta-v3-base) on the GLUE MRPC dataset. It achieves the following results on the evaluation set: - Loss: 0.5681 - Accuracy: 0.8946 - F1: 0.9244 - Combined Score: 0.9095 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 5.0 ### Framework versions - Transformers 4.28.1 - Pytorch 1.12.1+cu113 - Datasets 2.11.0 - Tokenizers 0.13.3