--- language: en license: mit datasets: - glue - mrpc metrics: - f1 tags: - text-classfication - nlp - neural-compressor - PostTrainingDynamic - int8 - IntelĀ® Neural Compressor --- # Dynamically quantized DistilBERT base uncased finetuned MPRC ## Table of Contents - [Model Details](#model-details) - [How to Get Started With the Model](#how-to-get-started-with-the-model) ## Model Details **Model Description:** This model is a [DistilBERT](https://huggingface.co/textattack/distilbert-base-uncased-MRPC) fine-tuned on MPRC dynamically quantized with [optimum-intel](https://github.com/huggingface/optimum-intel) through the usage of [huggingface/optimum-intel](https://github.com/huggingface/optimum-intel) through the usage of [IntelĀ® Neural Compressor](https://github.com/intel/neural-compressor). - **Model Type:** Text Classification - **Language(s):** English - **License:** Apache-2.0 - **Parent Model:** For more details on the original model, we encourage users to check out [this](https://huggingface.co/textattack/distilbert-base-uncased-MRPC) model card. ## How to Get Started With the Model ### PyTorch To load the quantized model, you can do as follows: ```python from optimum.intel import INCModelForSequenceClassification model_id = "Intel/distilbert-base-uncased-MRPC-int8-dynamic" model = INCModelForSequenceClassification.from_pretrained(model_id) ``` #### Test result | |INT8|FP32| |---|:---:|:---:| | **Accuracy (eval-f1)** |0.8983|0.9027| | **Model size (MB)** |75|268|