PEFT
Safetensors
English
jinjieyuan commited on
Commit
5f82b06
·
verified ·
1 Parent(s): ec189cd

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +120 -120
README.md CHANGED
@@ -1,120 +1,120 @@
1
- ---
2
- language: en
3
- license: apache-2.0
4
- ---
5
-
6
- # Shears Model Card: shears-llama-13b-50-math-heuristic
7
-
8
- The heuristic adapter discovered from the [super-adapter](https://huggingface.co/IntelLabs/shears-llama-13b-50-math-super) fine-tuned on sparsified LLaMA-13B with some math reasoning datasets using Shears.
9
-
10
- ## Model Details
11
-
12
- ### Information
13
-
14
- - **Model name:** shears-llama-13b-50-math-heuristic
15
- - **Base model:** [IntelLabs/Llama-1-13B-sparsity50](https://huggingface.co/IntelLabs/Llama-1-13B-sparsity50)
16
- - **Sparsity:** 50%
17
- - **Domain:** Math
18
- - **Subnetwork version:** Heuristic
19
- - **NNCF Configuration:** [nncf_shears_llama.json](https://github.com/IntelLabs/Hardware-Aware-Automated-Machine-Learning/tree/main/Shears/nncf_config/nncf_shears_llama.json)
20
-
21
- ### Adapter Configuration
22
-
23
- - **LoRA rank:** 32 (24 in the heuristic subnetwork)
24
- - **LoRA alpha:** 64
25
- - **LoRA target modules:** q_proj, k_proj, v_proj, up_proj, down_proj
26
- - **LoRA rank search space:** [32, 24, 16] (for each LoRA module)
27
-
28
- ### Training Hyperparameters
29
-
30
- - **Batch size:** 16
31
- - **Learning rate:** 3e-4
32
- - **Epoch:** 3
33
-
34
- ### Training Data
35
-
36
- Unified math reasoning dataset: [math_10k.json](https://github.com/AGI-Edgerunners/LLM-Adapters/blob/main/ft-training_set/math_10k.json) (collected with the training sets of GSM8K, MAWPS, and AQuA).
37
-
38
- ### Evaluation Data
39
- [GSM8K](https://github.com/AGI-Edgerunners/LLM-Adapters/blob/main/dataset/gsm8k/test.json), [AQuA](https://github.com/AGI-Edgerunners/LLM-Adapters/blob/main/dataset/AQuA/test.json), [MAWPS](https://github.com/AGI-Edgerunners/LLM-Adapters/blob/main/dataset/mawps/test.json), [SVAMP](https://github.com/AGI-Edgerunners/LLM-Adapters/blob/main/dataset/SVAMP/test.json)
40
-
41
-
42
- ## How to use
43
-
44
- Use our modified PEFT library (apply [patch](https://github.com/IntelLabs/Hardware-Aware-Automated-Machine-Learning/tree/main/Shears/patches/peft-modifications-for-shears-inference-usage.patch)):
45
- ```bash
46
- git clone https://github.com/huggingface/peft.git
47
- cd peft && git checkout v0.5.0 && git apply --ignore-space-change --ignore-whitespace peft-modifications-for-shears-inference-usage.patch && pip install -e . && cd ..
48
- ```
49
-
50
- ```python
51
- import torch
52
- from peft import PeftModel
53
- from transformers import AutoModelForCausalLM
54
- from transformers import AutoTokenizer
55
-
56
- def generate_prompt(instruction):
57
- return f"""Below is an instruction that describes a task. Write a response that appropriately completes the request.
58
-
59
- ### Instruction:
60
- {instruction}
61
-
62
- ### Response:
63
- """
64
-
65
- base_model = AutoModelForCausalLM.from_pretrained("IntelLabs/Llama-1-13B-sparsity50")
66
- model = PeftModel.from_pretrained(base_model, "IntelLabs/shears-llama-13b-50-math-heuristic")
67
- model.eval()
68
-
69
- non_zero_params = sum([(param.data != 0).sum().item() for _, param in model.named_parameters()])
70
- print(f"Number of all non-zero parameters: {non_zero_params}")
71
-
72
- tokenizer = AutoTokenizer.from_pretrained("IntelLabs/Llama-1-13B-sparsity50")
73
-
74
- instruction = "Edgar eats 18 pretzels a day. If his brother eats 1/2 as many, how many does his brother eat in a week?"
75
- prompt = generate_prompt(instruction)
76
- inputs = tokenizer(prompt, return_tensors="pt")
77
- input_ids = inputs["input_ids"].to(model.device)
78
- with torch.no_grad():
79
- generation_output = model.generate(
80
- input_ids=input_ids,
81
- return_dict_in_generate=True,
82
- output_scores=True,
83
- max_new_tokens=256,
84
- use_cache=True,
85
- num_beams=4,
86
- )
87
- s = generation_output.sequences[0]
88
- output = tokenizer.decode(s)
89
- print(output)
90
-
91
- ```
92
-
93
- ## Evaluation Results
94
-
95
- | Model | Sparsity | GSM8K | AQuA | MAWPS | SVAMP | Average |
96
- |-----------------------|-------------|-------|-------|-------|-------|---------|
97
- | LLaMA-7B-LoRA | - | 37.5 | 18.9 | 79.0 | 52.1 | 46.9 |
98
- | [**LLaMA-7B-Shears**](https://huggingface.co/IntelLabs/shears-llama-7b-50-math-heuristic) | **50%** | 36.1 | 22.0 | 78.6 | 44.5 | 45.3 |
99
- | LLaMA-13B-LoRA | - | 47.5 | 18.5 | 83.6 | 54.6 | 51.1 |
100
- | [**LLaMA-13B-Shears**](https://huggingface.co/IntelLabs/shears-llama-13b-50-math-heuristic) | **50%** | 45.1 | 22.0 | 83.2 | 53.3 | 50.9 |
101
-
102
- ## Model Sources
103
-
104
- - **Repository:** [https://github.com/IntelLabs/Hardware-Aware-Automated-Machine-Learning/tree/main/Shears](https://github.com/IntelLabs/Hardware-Aware-Automated-Machine-Learning/tree/main/Shears)
105
- - **Paper:** [Shears: Unstructured Sparsity with Neural Low-rank Adapter Search](https://arxiv.org/abs/2404.10934)
106
-
107
- ## Citation
108
-
109
- ```bash
110
- @article{munoz2024shears,
111
- title = {Shears: Unstructured Sparsity with Neural Low-rank Adapter Search},
112
- author={J. Pablo Munoz and Jinjie Yuan and Nilesh Jain},
113
- journal={The 2024 Annual Conference of the North American Chapter of the Association for Computational Linguistics (NAACL-2024)},
114
- year={2024}
115
- }
116
- ```
117
-
118
- ## License
119
-
120
- Apache-2.0
 
1
+ ---
2
+ language: en
3
+ license: apache-2.0
4
+ ---
5
+
6
+ # Shears Model Card: shears-llama-13b-50-math-heuristic-adapter
7
+
8
+ The heuristic adapter discovered from the [super-adapter](https://huggingface.co/IntelLabs/shears-llama-13b-50-math-super-adapter) fine-tuned on sparsified LLaMA-13B with some math reasoning datasets using Shears.
9
+
10
+ ## Model Details
11
+
12
+ ### Information
13
+
14
+ - **Model name:** shears-llama-13b-50-math-heuristic-adapter
15
+ - **Base model:** [IntelLabs/shears-llama-13b-50-base](https://huggingface.co/IntelLabs/shears-llama-13b-50-base)
16
+ - **Sparsity:** 50%
17
+ - **Domain:** Math
18
+ - **Subnetwork version:** Heuristic
19
+ - **NNCF Configuration:** [nncf_shears_llama.json](https://github.com/IntelLabs/Hardware-Aware-Automated-Machine-Learning/tree/main/Shears/nncf_config/nncf_shears_llama.json)
20
+
21
+ ### Adapter Configuration
22
+
23
+ - **LoRA rank:** 32 (24 in the heuristic subnetwork)
24
+ - **LoRA alpha:** 64
25
+ - **LoRA target modules:** q_proj, k_proj, v_proj, up_proj, down_proj
26
+ - **LoRA rank search space:** [32, 24, 16] (for each LoRA module)
27
+
28
+ ### Training Hyperparameters
29
+
30
+ - **Batch size:** 16
31
+ - **Learning rate:** 3e-4
32
+ - **Epoch:** 3
33
+
34
+ ### Training Data
35
+
36
+ Unified math reasoning dataset: [math_10k.json](https://github.com/AGI-Edgerunners/LLM-Adapters/blob/main/ft-training_set/math_10k.json) (collected with the training sets of GSM8K, MAWPS, and AQuA).
37
+
38
+ ### Evaluation Data
39
+ [GSM8K](https://github.com/AGI-Edgerunners/LLM-Adapters/blob/main/dataset/gsm8k/test.json), [AQuA](https://github.com/AGI-Edgerunners/LLM-Adapters/blob/main/dataset/AQuA/test.json), [MAWPS](https://github.com/AGI-Edgerunners/LLM-Adapters/blob/main/dataset/mawps/test.json), [SVAMP](https://github.com/AGI-Edgerunners/LLM-Adapters/blob/main/dataset/SVAMP/test.json)
40
+
41
+
42
+ ## How to use
43
+
44
+ Use our modified PEFT library (apply [patch](https://github.com/IntelLabs/Hardware-Aware-Automated-Machine-Learning/tree/main/Shears/patches/peft-modifications-for-shears-inference-usage.patch)):
45
+ ```bash
46
+ git clone https://github.com/huggingface/peft.git
47
+ cd peft && git checkout v0.5.0 && git apply --ignore-space-change --ignore-whitespace peft-modifications-for-shears-inference-usage.patch && pip install -e . && cd ..
48
+ ```
49
+
50
+ ```python
51
+ import torch
52
+ from peft import PeftModel
53
+ from transformers import AutoModelForCausalLM
54
+ from transformers import AutoTokenizer
55
+
56
+ def generate_prompt(instruction):
57
+ return f"""Below is an instruction that describes a task. Write a response that appropriately completes the request.
58
+
59
+ ### Instruction:
60
+ {instruction}
61
+
62
+ ### Response:
63
+ """
64
+
65
+ base_model = AutoModelForCausalLM.from_pretrained("IntelLabs/shears-llama-13b-50-base")
66
+ model = PeftModel.from_pretrained(base_model, "IntelLabs/shears-llama-13b-50-math-heuristic-adapter")
67
+ model.eval()
68
+
69
+ non_zero_params = sum([(param.data != 0).sum().item() for _, param in model.named_parameters()])
70
+ print(f"Number of all non-zero parameters: {non_zero_params}")
71
+
72
+ tokenizer = AutoTokenizer.from_pretrained("IntelLabs/shears-llama-13b-50-base")
73
+
74
+ instruction = "Edgar eats 18 pretzels a day. If his brother eats 1/2 as many, how many does his brother eat in a week?"
75
+ prompt = generate_prompt(instruction)
76
+ inputs = tokenizer(prompt, return_tensors="pt")
77
+ input_ids = inputs["input_ids"].to(model.device)
78
+ with torch.no_grad():
79
+ generation_output = model.generate(
80
+ input_ids=input_ids,
81
+ return_dict_in_generate=True,
82
+ output_scores=True,
83
+ max_new_tokens=256,
84
+ use_cache=True,
85
+ num_beams=4,
86
+ )
87
+ s = generation_output.sequences[0]
88
+ output = tokenizer.decode(s)
89
+ print(output)
90
+
91
+ ```
92
+
93
+ ## Evaluation Results
94
+
95
+ | Model | Sparsity | GSM8K | AQuA | MAWPS | SVAMP | Average |
96
+ |-----------------------|-------------|-------|-------|-------|-------|---------|
97
+ | LLaMA-7B-LoRA | - | 37.5 | 18.9 | 79.0 | 52.1 | 46.9 |
98
+ | [**LLaMA-7B-Shears**](https://huggingface.co/IntelLabs/shears-llama-7b-50-math-heuristic-adapter) | **50%** | 36.1 | 22.0 | 78.6 | 44.5 | 45.3 |
99
+ | LLaMA-13B-LoRA | - | 47.5 | 18.5 | 83.6 | 54.6 | 51.1 |
100
+ | [**LLaMA-13B-Shears**](https://huggingface.co/IntelLabs/shears-llama-13b-50-math-heuristic-adapter) | **50%** | 45.1 | 22.0 | 83.2 | 53.3 | 50.9 |
101
+
102
+ ## Model Sources
103
+
104
+ - **Repository:** [https://github.com/IntelLabs/Hardware-Aware-Automated-Machine-Learning/tree/main/Shears](https://github.com/IntelLabs/Hardware-Aware-Automated-Machine-Learning/tree/main/Shears)
105
+ - **Paper:** [Shears: Unstructured Sparsity with Neural Low-rank Adapter Search](https://arxiv.org/abs/2404.10934)
106
+
107
+ ## Citation
108
+
109
+ ```bash
110
+ @article{munoz2024shears,
111
+ title = {Shears: Unstructured Sparsity with Neural Low-rank Adapter Search},
112
+ author={J. Pablo Munoz and Jinjie Yuan and Nilesh Jain},
113
+ journal={The 2024 Annual Conference of the North American Chapter of the Association for Computational Linguistics (NAACL-2024)},
114
+ year={2024}
115
+ }
116
+ ```
117
+
118
+ ## License
119
+
120
+ Apache-2.0