--- language: en license: apache-2.0 --- # Shears Model Card: shears-llama-13b-50-math-heuristic-adapter The heuristic adapter discovered from the [super-adapter](https://huggingface.co/IntelLabs/shears-llama-13b-50-math-super-adapter) fine-tuned on sparsified LLaMA-13B with some math reasoning datasets using Shears. ## Model Details ### Information - **Model name:** shears-llama-13b-50-math-heuristic-adapter - **Base model:** Sparsified [LLaMA-13B](https://huggingface.co/yahma/llama-13b-hf) - **Sparsity:** 50% - **Domain:** Math - **Subnetwork version:** Heuristic - **NNCF Configuration:** [nncf_shears_llama.json](https://github.com/IntelLabs/Hardware-Aware-Automated-Machine-Learning/tree/main/Shears/nncf_config/nncf_shears_llama.json) ### Sparsified Base Model Shears employs a simple but effective pruning approach [Wanda](https://arxiv.org/abs/2306.11695) to sparsify the language model, serving as the base model. Clone the [Wanda](https://github.com/locuslab/wanda) repo: ```bash git clone https://github.com/locuslab/wanda.git && cd wanda && git checkout 8e8fc87 && cd .. ``` The command for unstructured sparsifying LLaMA-13B with Wanda, to achieve unstructured 50% sparsity: ```bash python wanda/main.py \ --model yahma/llama-13b-hf \ --prune_method wanda \ --sparsity_ratio 0.5 \ --sparsity_type unstructured \ --save wanda_out \ --save_model shears-llama-13b-50-base ``` - `--model`: The identifier for the model on the Hugging Face model hub or local path. - `--sparsity_ratio`: Specifies the percentage of weights to be pruned. - `--save_model`: Specifies the directory where the pruned language model will be stored. Refer to our [repo](https://github.com/IntelLabs/Hardware-Aware-Automated-Machine-Learning/tree/main/Shears#setup) for the environment information to run this command. ### Adapter Configuration - **LoRA rank:** 32 (24 in the heuristic subnetwork) - **LoRA alpha:** 64 - **LoRA target modules:** q_proj, k_proj, v_proj, up_proj, down_proj - **LoRA rank search space:** [32, 24, 16] (for each LoRA module) ### Training Hyperparameters - **Batch size:** 16 - **Learning rate:** 3e-4 - **Epoch:** 3 ### Training Data Unified math reasoning dataset: [math_10k.json](https://github.com/AGI-Edgerunners/LLM-Adapters/blob/main/ft-training_set/math_10k.json) (collected with the training sets of GSM8K, MAWPS, and AQuA). ### Evaluation Data [GSM8K](https://github.com/AGI-Edgerunners/LLM-Adapters/blob/main/dataset/gsm8k/test.json), [AQuA](https://github.com/AGI-Edgerunners/LLM-Adapters/blob/main/dataset/AQuA/test.json), [MAWPS](https://github.com/AGI-Edgerunners/LLM-Adapters/blob/main/dataset/mawps/test.json), [SVAMP](https://github.com/AGI-Edgerunners/LLM-Adapters/blob/main/dataset/SVAMP/test.json) ## How to use Use our modified PEFT library (apply [patch](https://github.com/IntelLabs/Hardware-Aware-Automated-Machine-Learning/tree/main/Shears/patches/peft-modifications-for-shears-inference-usage.patch)): ```bash git clone https://github.com/huggingface/peft.git cd peft && git checkout v0.5.0 && git apply --ignore-space-change --ignore-whitespace peft-modifications-for-shears-inference-usage.patch && pip install -e . && cd .. ``` ```python import torch from peft import PeftModel from transformers import AutoModelForCausalLM from transformers import AutoTokenizer def generate_prompt(instruction): return f"""Below is an instruction that describes a task. Write a response that appropriately completes the request. ### Instruction: {instruction} ### Response: """ base_model = AutoModelForCausalLM.from_pretrained("shears-llama-13b-50-base") model = PeftModel.from_pretrained(base_model, "IntelLabs/shears-llama-13b-50-math-heuristic-adapter") model.eval() non_zero_params = sum([(param.data != 0).sum().item() for _, param in model.named_parameters()]) print(f"Number of all non-zero parameters: {non_zero_params}") tokenizer = AutoTokenizer.from_pretrained("shears-llama-13b-50-base") instruction = "Edgar eats 18 pretzels a day. If his brother eats 1/2 as many, how many does his brother eat in a week?" prompt = generate_prompt(instruction) inputs = tokenizer(prompt, return_tensors="pt") input_ids = inputs["input_ids"].to(model.device) with torch.no_grad(): generation_output = model.generate( input_ids=input_ids, return_dict_in_generate=True, output_scores=True, max_new_tokens=256, use_cache=True, num_beams=4, ) s = generation_output.sequences[0] output = tokenizer.decode(s) print(output) ``` ## Evaluation Results | Model | Sparsity | GSM8K | AQuA | MAWPS | SVAMP | Average | |-----------------------|-------------|-------|-------|-------|-------|---------| | LLaMA-7B-LoRA | - | 37.5 | 18.9 | 79.0 | 52.1 | 46.9 | | [**LLaMA-7B-Shears**](https://huggingface.co/IntelLabs/shears-llama-7b-50-math-heuristic-adapter) | **50%** | 36.1 | 22.0 | 78.6 | 44.5 | 45.3 | | LLaMA-13B-LoRA | - | 47.5 | 18.5 | 83.6 | 54.6 | 51.1 | | [**LLaMA-13B-Shears**](https://huggingface.co/IntelLabs/shears-llama-13b-50-math-heuristic-adapter) | **50%** | 45.1 | 22.0 | 83.2 | 53.3 | 50.9 | ## Model Sources - **Repository:** [https://github.com/IntelLabs/Hardware-Aware-Automated-Machine-Learning/tree/main/Shears](https://github.com/IntelLabs/Hardware-Aware-Automated-Machine-Learning/tree/main/Shears) - **Paper:** [Shears: Unstructured Sparsity with Neural Low-rank Adapter Search](https://arxiv.org/abs/2404.10934) ## Citation ```bash @article{munoz2024shears, title = {Shears: Unstructured Sparsity with Neural Low-rank Adapter Search}, author={J. Pablo Munoz and Jinjie Yuan and Nilesh Jain}, journal={The 2024 Annual Conference of the North American Chapter of the Association for Computational Linguistics (NAACL-2024)}, year={2024} } ``` ## License Apache-2.0