LBK95 commited on
Commit
caab1ef
·
verified ·
1 Parent(s): 73198b4

End of training

Browse files
Files changed (1) hide show
  1. README.md +81 -0
README.md ADDED
@@ -0,0 +1,81 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: meta-llama/Llama-2-7b-hf
3
+ library_name: peft
4
+ license: llama2
5
+ tags:
6
+ - trl
7
+ - dpo
8
+ - generated_from_trainer
9
+ model-index:
10
+ - name: Llama-2-7b-hf-DPO-LookAhead-0_TTree1.4_TT0.9_TP0.7_TE0.2_V5
11
+ results: []
12
+ ---
13
+
14
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
15
+ should probably proofread and complete it, then remove this comment. -->
16
+
17
+ # Llama-2-7b-hf-DPO-LookAhead-0_TTree1.4_TT0.9_TP0.7_TE0.2_V5
18
+
19
+ This model is a fine-tuned version of [meta-llama/Llama-2-7b-hf](https://huggingface.co/meta-llama/Llama-2-7b-hf) on the None dataset.
20
+ It achieves the following results on the evaluation set:
21
+ - Loss: 1.0897
22
+ - Rewards/chosen: -2.9914
23
+ - Rewards/rejected: -2.7155
24
+ - Rewards/accuracies: 0.4000
25
+ - Rewards/margins: -0.2759
26
+ - Logps/rejected: -168.0010
27
+ - Logps/chosen: -174.0661
28
+ - Logits/rejected: -0.5254
29
+ - Logits/chosen: -0.5339
30
+
31
+ ## Model description
32
+
33
+ More information needed
34
+
35
+ ## Intended uses & limitations
36
+
37
+ More information needed
38
+
39
+ ## Training and evaluation data
40
+
41
+ More information needed
42
+
43
+ ## Training procedure
44
+
45
+ ### Training hyperparameters
46
+
47
+ The following hyperparameters were used during training:
48
+ - learning_rate: 5e-05
49
+ - train_batch_size: 2
50
+ - eval_batch_size: 2
51
+ - seed: 42
52
+ - gradient_accumulation_steps: 2
53
+ - total_train_batch_size: 4
54
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
55
+ - lr_scheduler_type: cosine
56
+ - lr_scheduler_warmup_steps: 10
57
+ - num_epochs: 3
58
+
59
+ ### Training results
60
+
61
+ | Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen |
62
+ |:-------------:|:------:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:|
63
+ | 0.7826 | 0.2993 | 66 | 0.6590 | 0.0849 | 0.0090 | 0.8000 | 0.0759 | -140.7556 | -143.3033 | 0.0847 | 0.0794 |
64
+ | 0.639 | 0.5986 | 132 | 0.6196 | 0.1097 | -0.0511 | 0.9000 | 0.1607 | -141.3567 | -143.0557 | 0.0753 | 0.0696 |
65
+ | 0.5359 | 0.8980 | 198 | 0.6393 | 0.0423 | -0.0866 | 0.8000 | 0.1290 | -141.7119 | -143.7288 | 0.0629 | 0.0567 |
66
+ | 0.2727 | 1.1973 | 264 | 0.8080 | -1.1508 | -1.3039 | 0.6000 | 0.1532 | -153.8851 | -155.6598 | -0.0274 | -0.0343 |
67
+ | 0.3407 | 1.4966 | 330 | 0.6648 | -0.9615 | -1.1845 | 0.7000 | 0.2230 | -152.6907 | -153.7668 | -0.0764 | -0.0838 |
68
+ | 0.3991 | 1.7959 | 396 | 0.7534 | -1.2141 | -1.2811 | 0.6000 | 0.0670 | -153.6568 | -156.2932 | -0.1934 | -0.2005 |
69
+ | 0.1309 | 2.0952 | 462 | 0.8973 | -1.9586 | -1.8725 | 0.4000 | -0.0861 | -159.5707 | -163.7383 | -0.3197 | -0.3272 |
70
+ | 0.0603 | 2.3946 | 528 | 1.0892 | -2.8596 | -2.5458 | 0.3000 | -0.3138 | -166.3034 | -172.7478 | -0.4837 | -0.4920 |
71
+ | 0.1481 | 2.6939 | 594 | 1.1046 | -3.0656 | -2.7656 | 0.4000 | -0.2999 | -168.5022 | -174.8080 | -0.5326 | -0.5412 |
72
+ | 0.2564 | 2.9932 | 660 | 1.0897 | -2.9914 | -2.7155 | 0.4000 | -0.2759 | -168.0010 | -174.0661 | -0.5254 | -0.5339 |
73
+
74
+
75
+ ### Framework versions
76
+
77
+ - PEFT 0.12.0
78
+ - Transformers 4.44.0
79
+ - Pytorch 2.4.0+cu121
80
+ - Datasets 3.1.0
81
+ - Tokenizers 0.19.1