End of training
Browse files
README.md
ADDED
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: meta-llama/Llama-2-7b-hf
|
3 |
+
library_name: peft
|
4 |
+
license: llama2
|
5 |
+
tags:
|
6 |
+
- trl
|
7 |
+
- dpo
|
8 |
+
- generated_from_trainer
|
9 |
+
model-index:
|
10 |
+
- name: Llama-2-7b-hf-DPO-LookAhead-0_TTree1.4_TT0.9_TP0.7_TE0.2_V5
|
11 |
+
results: []
|
12 |
+
---
|
13 |
+
|
14 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
15 |
+
should probably proofread and complete it, then remove this comment. -->
|
16 |
+
|
17 |
+
# Llama-2-7b-hf-DPO-LookAhead-0_TTree1.4_TT0.9_TP0.7_TE0.2_V5
|
18 |
+
|
19 |
+
This model is a fine-tuned version of [meta-llama/Llama-2-7b-hf](https://huggingface.co/meta-llama/Llama-2-7b-hf) on the None dataset.
|
20 |
+
It achieves the following results on the evaluation set:
|
21 |
+
- Loss: 1.0897
|
22 |
+
- Rewards/chosen: -2.9914
|
23 |
+
- Rewards/rejected: -2.7155
|
24 |
+
- Rewards/accuracies: 0.4000
|
25 |
+
- Rewards/margins: -0.2759
|
26 |
+
- Logps/rejected: -168.0010
|
27 |
+
- Logps/chosen: -174.0661
|
28 |
+
- Logits/rejected: -0.5254
|
29 |
+
- Logits/chosen: -0.5339
|
30 |
+
|
31 |
+
## Model description
|
32 |
+
|
33 |
+
More information needed
|
34 |
+
|
35 |
+
## Intended uses & limitations
|
36 |
+
|
37 |
+
More information needed
|
38 |
+
|
39 |
+
## Training and evaluation data
|
40 |
+
|
41 |
+
More information needed
|
42 |
+
|
43 |
+
## Training procedure
|
44 |
+
|
45 |
+
### Training hyperparameters
|
46 |
+
|
47 |
+
The following hyperparameters were used during training:
|
48 |
+
- learning_rate: 5e-05
|
49 |
+
- train_batch_size: 2
|
50 |
+
- eval_batch_size: 2
|
51 |
+
- seed: 42
|
52 |
+
- gradient_accumulation_steps: 2
|
53 |
+
- total_train_batch_size: 4
|
54 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
55 |
+
- lr_scheduler_type: cosine
|
56 |
+
- lr_scheduler_warmup_steps: 10
|
57 |
+
- num_epochs: 3
|
58 |
+
|
59 |
+
### Training results
|
60 |
+
|
61 |
+
| Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen |
|
62 |
+
|:-------------:|:------:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:|
|
63 |
+
| 0.7826 | 0.2993 | 66 | 0.6590 | 0.0849 | 0.0090 | 0.8000 | 0.0759 | -140.7556 | -143.3033 | 0.0847 | 0.0794 |
|
64 |
+
| 0.639 | 0.5986 | 132 | 0.6196 | 0.1097 | -0.0511 | 0.9000 | 0.1607 | -141.3567 | -143.0557 | 0.0753 | 0.0696 |
|
65 |
+
| 0.5359 | 0.8980 | 198 | 0.6393 | 0.0423 | -0.0866 | 0.8000 | 0.1290 | -141.7119 | -143.7288 | 0.0629 | 0.0567 |
|
66 |
+
| 0.2727 | 1.1973 | 264 | 0.8080 | -1.1508 | -1.3039 | 0.6000 | 0.1532 | -153.8851 | -155.6598 | -0.0274 | -0.0343 |
|
67 |
+
| 0.3407 | 1.4966 | 330 | 0.6648 | -0.9615 | -1.1845 | 0.7000 | 0.2230 | -152.6907 | -153.7668 | -0.0764 | -0.0838 |
|
68 |
+
| 0.3991 | 1.7959 | 396 | 0.7534 | -1.2141 | -1.2811 | 0.6000 | 0.0670 | -153.6568 | -156.2932 | -0.1934 | -0.2005 |
|
69 |
+
| 0.1309 | 2.0952 | 462 | 0.8973 | -1.9586 | -1.8725 | 0.4000 | -0.0861 | -159.5707 | -163.7383 | -0.3197 | -0.3272 |
|
70 |
+
| 0.0603 | 2.3946 | 528 | 1.0892 | -2.8596 | -2.5458 | 0.3000 | -0.3138 | -166.3034 | -172.7478 | -0.4837 | -0.4920 |
|
71 |
+
| 0.1481 | 2.6939 | 594 | 1.1046 | -3.0656 | -2.7656 | 0.4000 | -0.2999 | -168.5022 | -174.8080 | -0.5326 | -0.5412 |
|
72 |
+
| 0.2564 | 2.9932 | 660 | 1.0897 | -2.9914 | -2.7155 | 0.4000 | -0.2759 | -168.0010 | -174.0661 | -0.5254 | -0.5339 |
|
73 |
+
|
74 |
+
|
75 |
+
### Framework versions
|
76 |
+
|
77 |
+
- PEFT 0.12.0
|
78 |
+
- Transformers 4.44.0
|
79 |
+
- Pytorch 2.4.0+cu121
|
80 |
+
- Datasets 3.1.0
|
81 |
+
- Tokenizers 0.19.1
|