LBK95 commited on
Commit
51bae8c
·
verified ·
1 Parent(s): 36eaa8f

End of training

Browse files
Files changed (1) hide show
  1. README.md +80 -0
README.md ADDED
@@ -0,0 +1,80 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: llama2
3
+ base_model: meta-llama/Llama-2-7b-hf
4
+ tags:
5
+ - trl
6
+ - dpo
7
+ - generated_from_trainer
8
+ library_name: peft
9
+ model-index:
10
+ - name: Llama-2-7b-hf-DPO-LookAhead-0_TTree1.4_TT0.9_TP0.7_TE0.2_V6
11
+ results: []
12
+ ---
13
+
14
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
15
+ should probably proofread and complete it, then remove this comment. -->
16
+
17
+ # Llama-2-7b-hf-DPO-LookAhead-0_TTree1.4_TT0.9_TP0.7_TE0.2_V6
18
+
19
+ This model is a fine-tuned version of [meta-llama/Llama-2-7b-hf](https://huggingface.co/meta-llama/Llama-2-7b-hf) on the None dataset.
20
+ It achieves the following results on the evaluation set:
21
+ - Loss: 0.9591
22
+ - Rewards/chosen: -2.8498
23
+ - Rewards/rejected: -3.2567
24
+ - Rewards/accuracies: 0.6000
25
+ - Rewards/margins: 0.4069
26
+ - Logps/rejected: -145.1960
27
+ - Logps/chosen: -111.9480
28
+ - Logits/rejected: 0.1780
29
+ - Logits/chosen: 0.1994
30
+
31
+ ## Model description
32
+
33
+ More information needed
34
+
35
+ ## Intended uses & limitations
36
+
37
+ More information needed
38
+
39
+ ## Training and evaluation data
40
+
41
+ More information needed
42
+
43
+ ## Training procedure
44
+
45
+ ### Training hyperparameters
46
+
47
+ The following hyperparameters were used during training:
48
+ - learning_rate: 5e-05
49
+ - train_batch_size: 2
50
+ - eval_batch_size: 2
51
+ - seed: 42
52
+ - gradient_accumulation_steps: 2
53
+ - total_train_batch_size: 4
54
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
55
+ - lr_scheduler_type: cosine
56
+ - lr_scheduler_warmup_steps: 10
57
+ - num_epochs: 3
58
+
59
+ ### Training results
60
+
61
+ | Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen |
62
+ |:-------------:|:------:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:|
63
+ | 0.6832 | 0.3007 | 69 | 0.6916 | -0.1597 | -0.1889 | 0.4000 | 0.0292 | -114.5179 | -85.0475 | 0.6233 | 0.6414 |
64
+ | 0.7529 | 0.6013 | 138 | 0.6560 | -0.2047 | -0.3472 | 0.5 | 0.1425 | -116.1010 | -85.4976 | 0.6177 | 0.6354 |
65
+ | 0.693 | 0.9020 | 207 | 0.6636 | 0.0291 | -0.0598 | 0.5 | 0.0889 | -113.2271 | -83.1593 | 0.6143 | 0.6331 |
66
+ | 0.4049 | 1.2026 | 276 | 0.6820 | -0.9628 | -1.4793 | 0.5 | 0.5166 | -127.4224 | -93.0781 | 0.5148 | 0.5312 |
67
+ | 0.3698 | 1.5033 | 345 | 0.6524 | -1.3282 | -1.9360 | 0.6000 | 0.6078 | -131.9892 | -96.7321 | 0.4151 | 0.4326 |
68
+ | 0.3176 | 1.8039 | 414 | 0.7491 | -1.8527 | -2.3707 | 0.6000 | 0.5180 | -136.3361 | -101.9771 | 0.3469 | 0.3652 |
69
+ | 0.361 | 2.1046 | 483 | 0.8110 | -2.2972 | -2.7632 | 0.5 | 0.4660 | -140.2609 | -106.4225 | 0.2734 | 0.2932 |
70
+ | 0.3286 | 2.4052 | 552 | 0.9465 | -2.7604 | -3.1816 | 0.6000 | 0.4212 | -144.4454 | -111.0542 | 0.1886 | 0.2099 |
71
+ | 0.0545 | 2.7059 | 621 | 0.9591 | -2.8498 | -3.2567 | 0.6000 | 0.4069 | -145.1960 | -111.9480 | 0.1780 | 0.1994 |
72
+
73
+
74
+ ### Framework versions
75
+
76
+ - PEFT 0.12.0
77
+ - Transformers 4.44.0
78
+ - Pytorch 2.4.0+cu121
79
+ - Datasets 3.1.0
80
+ - Tokenizers 0.19.1