LBK95 commited on
Commit
d54a900
·
verified ·
1 Parent(s): faf3f1a

End of training

Browse files
Files changed (1) hide show
  1. README.md +81 -0
README.md ADDED
@@ -0,0 +1,81 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ license: llama2
4
+ base_model: meta-llama/Llama-2-7b-hf
5
+ tags:
6
+ - trl
7
+ - dpo
8
+ - generated_from_trainer
9
+ model-index:
10
+ - name: Llama-2-7b-hf-DPO-LookAhead-0_TTree1.4_TT0.9_TP0.7_TE0.2_V7
11
+ results: []
12
+ ---
13
+
14
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
15
+ should probably proofread and complete it, then remove this comment. -->
16
+
17
+ # Llama-2-7b-hf-DPO-LookAhead-0_TTree1.4_TT0.9_TP0.7_TE0.2_V7
18
+
19
+ This model is a fine-tuned version of [meta-llama/Llama-2-7b-hf](https://huggingface.co/meta-llama/Llama-2-7b-hf) on the None dataset.
20
+ It achieves the following results on the evaluation set:
21
+ - Loss: 1.1519
22
+ - Rewards/chosen: -2.8728
23
+ - Rewards/rejected: -2.9359
24
+ - Rewards/accuracies: 0.4000
25
+ - Rewards/margins: 0.0631
26
+ - Logps/rejected: -141.0865
27
+ - Logps/chosen: -142.4955
28
+ - Logits/rejected: 0.0425
29
+ - Logits/chosen: -0.0160
30
+
31
+ ## Model description
32
+
33
+ More information needed
34
+
35
+ ## Intended uses & limitations
36
+
37
+ More information needed
38
+
39
+ ## Training and evaluation data
40
+
41
+ More information needed
42
+
43
+ ## Training procedure
44
+
45
+ ### Training hyperparameters
46
+
47
+ The following hyperparameters were used during training:
48
+ - learning_rate: 5e-05
49
+ - train_batch_size: 2
50
+ - eval_batch_size: 2
51
+ - seed: 42
52
+ - gradient_accumulation_steps: 2
53
+ - total_train_batch_size: 4
54
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
55
+ - lr_scheduler_type: cosine
56
+ - lr_scheduler_warmup_steps: 10
57
+ - num_epochs: 3
58
+
59
+ ### Training results
60
+
61
+ | Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen |
62
+ |:-------------:|:-----:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:|
63
+ | 0.7133 | 0.3 | 63 | 0.6946 | 0.0868 | 0.0595 | 0.6000 | 0.0274 | -111.1324 | -112.8988 | 0.5159 | 0.4902 |
64
+ | 0.5044 | 0.6 | 126 | 0.6814 | 0.2402 | 0.0924 | 0.6000 | 0.1478 | -110.8034 | -111.3656 | 0.5007 | 0.4738 |
65
+ | 0.6555 | 0.9 | 189 | 0.6392 | -0.0496 | -0.2815 | 0.7000 | 0.2319 | -114.5420 | -114.2632 | 0.5375 | 0.5056 |
66
+ | 0.2983 | 1.2 | 252 | 0.6671 | -0.8670 | -1.3823 | 0.5 | 0.5153 | -125.5504 | -122.4372 | 0.4453 | 0.4053 |
67
+ | 0.287 | 1.5 | 315 | 0.6743 | -1.0040 | -1.5229 | 0.4000 | 0.5189 | -126.9560 | -123.8071 | 0.3434 | 0.2980 |
68
+ | 0.313 | 1.8 | 378 | 0.7727 | -1.1663 | -1.4516 | 0.4000 | 0.2853 | -126.2434 | -125.4304 | 0.3244 | 0.2767 |
69
+ | 0.1026 | 2.1 | 441 | 0.8556 | -1.5616 | -1.8026 | 0.4000 | 0.2410 | -129.7528 | -129.3835 | 0.2187 | 0.1675 |
70
+ | 0.1738 | 2.4 | 504 | 1.1593 | -2.7915 | -2.8593 | 0.4000 | 0.0677 | -140.3199 | -141.6827 | 0.0630 | 0.0046 |
71
+ | 0.2095 | 2.7 | 567 | 1.1725 | -2.9060 | -2.9579 | 0.4000 | 0.0519 | -141.3057 | -142.8270 | 0.0427 | -0.0158 |
72
+ | 0.0235 | 3.0 | 630 | 1.1519 | -2.8728 | -2.9359 | 0.4000 | 0.0631 | -141.0865 | -142.4955 | 0.0425 | -0.0160 |
73
+
74
+
75
+ ### Framework versions
76
+
77
+ - PEFT 0.12.0
78
+ - Transformers 4.45.2
79
+ - Pytorch 2.4.0+cu121
80
+ - Datasets 3.2.0
81
+ - Tokenizers 0.20.3