LBK95 commited on
Commit
c3d4053
·
verified ·
1 Parent(s): 6e78695

End of training

Browse files
Files changed (1) hide show
  1. README.md +80 -0
README.md ADDED
@@ -0,0 +1,80 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ license: llama2
4
+ base_model: meta-llama/Llama-2-7b-hf
5
+ tags:
6
+ - trl
7
+ - dpo
8
+ - generated_from_trainer
9
+ model-index:
10
+ - name: Llama-2-7b-hf-DPO-LookAhead-0_TTree1.4_TT0.9_TP0.7_TE0.2_V7
11
+ results: []
12
+ ---
13
+
14
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
15
+ should probably proofread and complete it, then remove this comment. -->
16
+
17
+ # Llama-2-7b-hf-DPO-LookAhead-0_TTree1.4_TT0.9_TP0.7_TE0.2_V7
18
+
19
+ This model is a fine-tuned version of [meta-llama/Llama-2-7b-hf](https://huggingface.co/meta-llama/Llama-2-7b-hf) on the None dataset.
20
+ It achieves the following results on the evaluation set:
21
+ - Loss: 0.4540
22
+ - Rewards/chosen: -1.9538
23
+ - Rewards/rejected: -2.8279
24
+ - Rewards/accuracies: 0.9000
25
+ - Rewards/margins: 0.8741
26
+ - Logps/rejected: -178.4166
27
+ - Logps/chosen: -140.8054
28
+ - Logits/rejected: -0.0659
29
+ - Logits/chosen: -0.0598
30
+
31
+ ## Model description
32
+
33
+ More information needed
34
+
35
+ ## Intended uses & limitations
36
+
37
+ More information needed
38
+
39
+ ## Training and evaluation data
40
+
41
+ More information needed
42
+
43
+ ## Training procedure
44
+
45
+ ### Training hyperparameters
46
+
47
+ The following hyperparameters were used during training:
48
+ - learning_rate: 5e-05
49
+ - train_batch_size: 2
50
+ - eval_batch_size: 2
51
+ - seed: 42
52
+ - gradient_accumulation_steps: 2
53
+ - total_train_batch_size: 4
54
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
55
+ - lr_scheduler_type: cosine
56
+ - lr_scheduler_warmup_steps: 10
57
+ - num_epochs: 3
58
+
59
+ ### Training results
60
+
61
+ | Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen |
62
+ |:-------------:|:------:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:|
63
+ | 0.6759 | 0.3023 | 60 | 0.6970 | 0.0373 | 0.0397 | 0.6000 | -0.0024 | -149.7405 | -120.8940 | 0.4429 | 0.4532 |
64
+ | 0.6811 | 0.6045 | 120 | 0.6723 | -0.0412 | -0.0677 | 0.5 | 0.0265 | -150.8149 | -121.6795 | 0.4688 | 0.4793 |
65
+ | 0.5824 | 0.9068 | 180 | 0.6747 | 0.0390 | -0.0060 | 0.8000 | 0.0450 | -150.1981 | -120.8773 | 0.4537 | 0.4631 |
66
+ | 0.3049 | 1.2091 | 240 | 0.5606 | -0.3769 | -0.6960 | 0.7000 | 0.3191 | -157.0981 | -125.0365 | 0.3873 | 0.3966 |
67
+ | 0.3915 | 1.5113 | 300 | 0.5289 | -0.4550 | -0.8493 | 0.9000 | 0.3943 | -158.6304 | -125.8171 | 0.3314 | 0.3395 |
68
+ | 0.476 | 1.8136 | 360 | 0.5109 | -0.7144 | -1.1970 | 0.9000 | 0.4826 | -162.1081 | -128.4113 | 0.2160 | 0.2235 |
69
+ | 0.1137 | 2.1159 | 420 | 0.5121 | -1.1098 | -1.6334 | 0.8000 | 0.5236 | -166.4716 | -132.3654 | 0.0934 | 0.1001 |
70
+ | 0.3063 | 2.4181 | 480 | 0.4482 | -1.9206 | -2.8102 | 0.9000 | 0.8895 | -178.2394 | -140.4735 | -0.0433 | -0.0370 |
71
+ | 0.2409 | 2.7204 | 540 | 0.4540 | -1.9538 | -2.8279 | 0.9000 | 0.8741 | -178.4166 | -140.8054 | -0.0659 | -0.0598 |
72
+
73
+
74
+ ### Framework versions
75
+
76
+ - PEFT 0.12.0
77
+ - Transformers 4.45.2
78
+ - Pytorch 2.4.0+cu121
79
+ - Datasets 3.2.0
80
+ - Tokenizers 0.20.3