End of training
Browse files
README.md
ADDED
@@ -0,0 +1,80 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: peft
|
3 |
+
license: llama2
|
4 |
+
base_model: meta-llama/Llama-2-7b-hf
|
5 |
+
tags:
|
6 |
+
- trl
|
7 |
+
- dpo
|
8 |
+
- generated_from_trainer
|
9 |
+
model-index:
|
10 |
+
- name: Llama-2-7b-hf-DPO-LookAhead-0_TTree1.4_TT0.9_TP0.7_TE0.2_V7
|
11 |
+
results: []
|
12 |
+
---
|
13 |
+
|
14 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
15 |
+
should probably proofread and complete it, then remove this comment. -->
|
16 |
+
|
17 |
+
# Llama-2-7b-hf-DPO-LookAhead-0_TTree1.4_TT0.9_TP0.7_TE0.2_V7
|
18 |
+
|
19 |
+
This model is a fine-tuned version of [meta-llama/Llama-2-7b-hf](https://huggingface.co/meta-llama/Llama-2-7b-hf) on the None dataset.
|
20 |
+
It achieves the following results on the evaluation set:
|
21 |
+
- Loss: 0.4540
|
22 |
+
- Rewards/chosen: -1.9538
|
23 |
+
- Rewards/rejected: -2.8279
|
24 |
+
- Rewards/accuracies: 0.9000
|
25 |
+
- Rewards/margins: 0.8741
|
26 |
+
- Logps/rejected: -178.4166
|
27 |
+
- Logps/chosen: -140.8054
|
28 |
+
- Logits/rejected: -0.0659
|
29 |
+
- Logits/chosen: -0.0598
|
30 |
+
|
31 |
+
## Model description
|
32 |
+
|
33 |
+
More information needed
|
34 |
+
|
35 |
+
## Intended uses & limitations
|
36 |
+
|
37 |
+
More information needed
|
38 |
+
|
39 |
+
## Training and evaluation data
|
40 |
+
|
41 |
+
More information needed
|
42 |
+
|
43 |
+
## Training procedure
|
44 |
+
|
45 |
+
### Training hyperparameters
|
46 |
+
|
47 |
+
The following hyperparameters were used during training:
|
48 |
+
- learning_rate: 5e-05
|
49 |
+
- train_batch_size: 2
|
50 |
+
- eval_batch_size: 2
|
51 |
+
- seed: 42
|
52 |
+
- gradient_accumulation_steps: 2
|
53 |
+
- total_train_batch_size: 4
|
54 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
55 |
+
- lr_scheduler_type: cosine
|
56 |
+
- lr_scheduler_warmup_steps: 10
|
57 |
+
- num_epochs: 3
|
58 |
+
|
59 |
+
### Training results
|
60 |
+
|
61 |
+
| Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen |
|
62 |
+
|:-------------:|:------:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:|
|
63 |
+
| 0.6759 | 0.3023 | 60 | 0.6970 | 0.0373 | 0.0397 | 0.6000 | -0.0024 | -149.7405 | -120.8940 | 0.4429 | 0.4532 |
|
64 |
+
| 0.6811 | 0.6045 | 120 | 0.6723 | -0.0412 | -0.0677 | 0.5 | 0.0265 | -150.8149 | -121.6795 | 0.4688 | 0.4793 |
|
65 |
+
| 0.5824 | 0.9068 | 180 | 0.6747 | 0.0390 | -0.0060 | 0.8000 | 0.0450 | -150.1981 | -120.8773 | 0.4537 | 0.4631 |
|
66 |
+
| 0.3049 | 1.2091 | 240 | 0.5606 | -0.3769 | -0.6960 | 0.7000 | 0.3191 | -157.0981 | -125.0365 | 0.3873 | 0.3966 |
|
67 |
+
| 0.3915 | 1.5113 | 300 | 0.5289 | -0.4550 | -0.8493 | 0.9000 | 0.3943 | -158.6304 | -125.8171 | 0.3314 | 0.3395 |
|
68 |
+
| 0.476 | 1.8136 | 360 | 0.5109 | -0.7144 | -1.1970 | 0.9000 | 0.4826 | -162.1081 | -128.4113 | 0.2160 | 0.2235 |
|
69 |
+
| 0.1137 | 2.1159 | 420 | 0.5121 | -1.1098 | -1.6334 | 0.8000 | 0.5236 | -166.4716 | -132.3654 | 0.0934 | 0.1001 |
|
70 |
+
| 0.3063 | 2.4181 | 480 | 0.4482 | -1.9206 | -2.8102 | 0.9000 | 0.8895 | -178.2394 | -140.4735 | -0.0433 | -0.0370 |
|
71 |
+
| 0.2409 | 2.7204 | 540 | 0.4540 | -1.9538 | -2.8279 | 0.9000 | 0.8741 | -178.4166 | -140.8054 | -0.0659 | -0.0598 |
|
72 |
+
|
73 |
+
|
74 |
+
### Framework versions
|
75 |
+
|
76 |
+
- PEFT 0.12.0
|
77 |
+
- Transformers 4.45.2
|
78 |
+
- Pytorch 2.4.0+cu121
|
79 |
+
- Datasets 3.2.0
|
80 |
+
- Tokenizers 0.20.3
|