End of training
Browse files
README.md
ADDED
@@ -0,0 +1,80 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: llama2
|
3 |
+
base_model: meta-llama/Llama-2-7b-hf
|
4 |
+
tags:
|
5 |
+
- trl
|
6 |
+
- dpo
|
7 |
+
- generated_from_trainer
|
8 |
+
library_name: peft
|
9 |
+
model-index:
|
10 |
+
- name: Llama-2-7b-hf-DPO-LookAhead-5_Q2_TTree1.4_TT0.9_TP0.7_TE0.2_V1
|
11 |
+
results: []
|
12 |
+
---
|
13 |
+
|
14 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
15 |
+
should probably proofread and complete it, then remove this comment. -->
|
16 |
+
|
17 |
+
# Llama-2-7b-hf-DPO-LookAhead-5_Q2_TTree1.4_TT0.9_TP0.7_TE0.2_V1
|
18 |
+
|
19 |
+
This model is a fine-tuned version of [meta-llama/Llama-2-7b-hf](https://huggingface.co/meta-llama/Llama-2-7b-hf) on the None dataset.
|
20 |
+
It achieves the following results on the evaluation set:
|
21 |
+
- Loss: 1.2865
|
22 |
+
- Rewards/chosen: -2.3072
|
23 |
+
- Rewards/rejected: -1.8542
|
24 |
+
- Rewards/accuracies: 0.5
|
25 |
+
- Rewards/margins: -0.4531
|
26 |
+
- Logps/rejected: -121.6291
|
27 |
+
- Logps/chosen: -184.9154
|
28 |
+
- Logits/rejected: 0.2000
|
29 |
+
- Logits/chosen: 0.1668
|
30 |
+
|
31 |
+
## Model description
|
32 |
+
|
33 |
+
More information needed
|
34 |
+
|
35 |
+
## Intended uses & limitations
|
36 |
+
|
37 |
+
More information needed
|
38 |
+
|
39 |
+
## Training and evaluation data
|
40 |
+
|
41 |
+
More information needed
|
42 |
+
|
43 |
+
## Training procedure
|
44 |
+
|
45 |
+
### Training hyperparameters
|
46 |
+
|
47 |
+
The following hyperparameters were used during training:
|
48 |
+
- learning_rate: 5e-05
|
49 |
+
- train_batch_size: 2
|
50 |
+
- eval_batch_size: 2
|
51 |
+
- seed: 42
|
52 |
+
- gradient_accumulation_steps: 2
|
53 |
+
- total_train_batch_size: 4
|
54 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
55 |
+
- lr_scheduler_type: cosine
|
56 |
+
- lr_scheduler_warmup_steps: 10
|
57 |
+
- num_epochs: 3
|
58 |
+
|
59 |
+
### Training results
|
60 |
+
|
61 |
+
| Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen |
|
62 |
+
|:-------------:|:------:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:|
|
63 |
+
| 0.7102 | 0.3017 | 70 | 0.6900 | 0.0340 | 0.0258 | 0.7000 | 0.0082 | -102.8295 | -161.5030 | 0.6083 | 0.5744 |
|
64 |
+
| 0.7024 | 0.6034 | 140 | 0.7276 | 0.0806 | 0.1382 | 0.3000 | -0.0575 | -101.7058 | -161.0370 | 0.6015 | 0.5681 |
|
65 |
+
| 0.6653 | 0.9052 | 210 | 0.7362 | 0.0303 | 0.0739 | 0.4000 | -0.0435 | -102.3490 | -161.5399 | 0.6196 | 0.5858 |
|
66 |
+
| 0.488 | 1.2069 | 280 | 0.8450 | -0.5919 | -0.4398 | 0.4000 | -0.1521 | -107.4859 | -167.7624 | 0.5482 | 0.5148 |
|
67 |
+
| 0.5839 | 1.5086 | 350 | 0.8971 | -0.8481 | -0.6497 | 0.4000 | -0.1984 | -109.5843 | -170.3242 | 0.5183 | 0.4846 |
|
68 |
+
| 0.503 | 1.8103 | 420 | 1.0273 | -1.1487 | -0.8225 | 0.4000 | -0.3262 | -111.3127 | -173.3304 | 0.4207 | 0.3883 |
|
69 |
+
| 0.2083 | 2.1121 | 490 | 1.1693 | -1.6401 | -1.2436 | 0.4000 | -0.3965 | -115.5236 | -178.2447 | 0.2902 | 0.2576 |
|
70 |
+
| 0.1395 | 2.4138 | 560 | 1.2310 | -2.1881 | -1.7991 | 0.6000 | -0.3890 | -121.0787 | -183.7240 | 0.2345 | 0.2015 |
|
71 |
+
| 0.1618 | 2.7155 | 630 | 1.2865 | -2.3072 | -1.8542 | 0.5 | -0.4531 | -121.6291 | -184.9154 | 0.2000 | 0.1668 |
|
72 |
+
|
73 |
+
|
74 |
+
### Framework versions
|
75 |
+
|
76 |
+
- PEFT 0.12.0
|
77 |
+
- Transformers 4.44.0
|
78 |
+
- Pytorch 2.4.0+cu121
|
79 |
+
- Datasets 3.2.0
|
80 |
+
- Tokenizers 0.19.1
|