LBK95 commited on
Commit
5dafc25
·
verified ·
1 Parent(s): 4a99782

End of training

Browse files
Files changed (1) hide show
  1. README.md +80 -0
README.md ADDED
@@ -0,0 +1,80 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: llama2
3
+ base_model: meta-llama/Llama-2-7b-hf
4
+ tags:
5
+ - trl
6
+ - dpo
7
+ - generated_from_trainer
8
+ library_name: peft
9
+ model-index:
10
+ - name: Llama-2-7b-hf-DPO-LookAhead-5_Q2_TTree1.4_TT0.9_TP0.7_TE0.2_V1
11
+ results: []
12
+ ---
13
+
14
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
15
+ should probably proofread and complete it, then remove this comment. -->
16
+
17
+ # Llama-2-7b-hf-DPO-LookAhead-5_Q2_TTree1.4_TT0.9_TP0.7_TE0.2_V1
18
+
19
+ This model is a fine-tuned version of [meta-llama/Llama-2-7b-hf](https://huggingface.co/meta-llama/Llama-2-7b-hf) on the None dataset.
20
+ It achieves the following results on the evaluation set:
21
+ - Loss: 1.2865
22
+ - Rewards/chosen: -2.3072
23
+ - Rewards/rejected: -1.8542
24
+ - Rewards/accuracies: 0.5
25
+ - Rewards/margins: -0.4531
26
+ - Logps/rejected: -121.6291
27
+ - Logps/chosen: -184.9154
28
+ - Logits/rejected: 0.2000
29
+ - Logits/chosen: 0.1668
30
+
31
+ ## Model description
32
+
33
+ More information needed
34
+
35
+ ## Intended uses & limitations
36
+
37
+ More information needed
38
+
39
+ ## Training and evaluation data
40
+
41
+ More information needed
42
+
43
+ ## Training procedure
44
+
45
+ ### Training hyperparameters
46
+
47
+ The following hyperparameters were used during training:
48
+ - learning_rate: 5e-05
49
+ - train_batch_size: 2
50
+ - eval_batch_size: 2
51
+ - seed: 42
52
+ - gradient_accumulation_steps: 2
53
+ - total_train_batch_size: 4
54
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
55
+ - lr_scheduler_type: cosine
56
+ - lr_scheduler_warmup_steps: 10
57
+ - num_epochs: 3
58
+
59
+ ### Training results
60
+
61
+ | Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen |
62
+ |:-------------:|:------:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:|
63
+ | 0.7102 | 0.3017 | 70 | 0.6900 | 0.0340 | 0.0258 | 0.7000 | 0.0082 | -102.8295 | -161.5030 | 0.6083 | 0.5744 |
64
+ | 0.7024 | 0.6034 | 140 | 0.7276 | 0.0806 | 0.1382 | 0.3000 | -0.0575 | -101.7058 | -161.0370 | 0.6015 | 0.5681 |
65
+ | 0.6653 | 0.9052 | 210 | 0.7362 | 0.0303 | 0.0739 | 0.4000 | -0.0435 | -102.3490 | -161.5399 | 0.6196 | 0.5858 |
66
+ | 0.488 | 1.2069 | 280 | 0.8450 | -0.5919 | -0.4398 | 0.4000 | -0.1521 | -107.4859 | -167.7624 | 0.5482 | 0.5148 |
67
+ | 0.5839 | 1.5086 | 350 | 0.8971 | -0.8481 | -0.6497 | 0.4000 | -0.1984 | -109.5843 | -170.3242 | 0.5183 | 0.4846 |
68
+ | 0.503 | 1.8103 | 420 | 1.0273 | -1.1487 | -0.8225 | 0.4000 | -0.3262 | -111.3127 | -173.3304 | 0.4207 | 0.3883 |
69
+ | 0.2083 | 2.1121 | 490 | 1.1693 | -1.6401 | -1.2436 | 0.4000 | -0.3965 | -115.5236 | -178.2447 | 0.2902 | 0.2576 |
70
+ | 0.1395 | 2.4138 | 560 | 1.2310 | -2.1881 | -1.7991 | 0.6000 | -0.3890 | -121.0787 | -183.7240 | 0.2345 | 0.2015 |
71
+ | 0.1618 | 2.7155 | 630 | 1.2865 | -2.3072 | -1.8542 | 0.5 | -0.4531 | -121.6291 | -184.9154 | 0.2000 | 0.1668 |
72
+
73
+
74
+ ### Framework versions
75
+
76
+ - PEFT 0.12.0
77
+ - Transformers 4.44.0
78
+ - Pytorch 2.4.0+cu121
79
+ - Datasets 3.2.0
80
+ - Tokenizers 0.19.1