LBK95 commited on
Commit
2257bba
·
verified ·
1 Parent(s): 6b4b2ee

End of training

Browse files
Files changed (1) hide show
  1. README.md +80 -0
README.md ADDED
@@ -0,0 +1,80 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: llama2
3
+ base_model: meta-llama/Llama-2-7b-hf
4
+ tags:
5
+ - trl
6
+ - dpo
7
+ - generated_from_trainer
8
+ library_name: peft
9
+ model-index:
10
+ - name: Llama-2-7b-hf-DPO-LookAhead-5_TTree1.4_TT0.9_TP0.7_TE0.2_V5
11
+ results: []
12
+ ---
13
+
14
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
15
+ should probably proofread and complete it, then remove this comment. -->
16
+
17
+ # Llama-2-7b-hf-DPO-LookAhead-5_TTree1.4_TT0.9_TP0.7_TE0.2_V5
18
+
19
+ This model is a fine-tuned version of [meta-llama/Llama-2-7b-hf](https://huggingface.co/meta-llama/Llama-2-7b-hf) on the None dataset.
20
+ It achieves the following results on the evaluation set:
21
+ - Loss: 1.0059
22
+ - Rewards/chosen: -1.9822
23
+ - Rewards/rejected: -2.2494
24
+ - Rewards/accuracies: 0.6000
25
+ - Rewards/margins: 0.2673
26
+ - Logps/rejected: -163.8624
27
+ - Logps/chosen: -165.7420
28
+ - Logits/rejected: -0.1662
29
+ - Logits/chosen: -0.1805
30
+
31
+ ## Model description
32
+
33
+ More information needed
34
+
35
+ ## Intended uses & limitations
36
+
37
+ More information needed
38
+
39
+ ## Training and evaluation data
40
+
41
+ More information needed
42
+
43
+ ## Training procedure
44
+
45
+ ### Training hyperparameters
46
+
47
+ The following hyperparameters were used during training:
48
+ - learning_rate: 5e-05
49
+ - train_batch_size: 2
50
+ - eval_batch_size: 2
51
+ - seed: 42
52
+ - gradient_accumulation_steps: 2
53
+ - total_train_batch_size: 4
54
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
55
+ - lr_scheduler_type: cosine
56
+ - lr_scheduler_warmup_steps: 10
57
+ - num_epochs: 3
58
+
59
+ ### Training results
60
+
61
+ | Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen |
62
+ |:-------------:|:------:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:|
63
+ | 0.7395 | 0.3010 | 73 | 0.6468 | 0.0134 | -0.0847 | 0.9000 | 0.0981 | -142.2149 | -145.7866 | 0.3794 | 0.3670 |
64
+ | 0.7285 | 0.6021 | 146 | 0.6128 | 0.0518 | -0.1414 | 0.7000 | 0.1932 | -142.7814 | -145.4018 | 0.3432 | 0.3316 |
65
+ | 0.5488 | 0.9031 | 219 | 0.5896 | 0.0505 | -0.2094 | 0.8000 | 0.2599 | -143.4620 | -145.4151 | 0.3212 | 0.3092 |
66
+ | 0.4181 | 1.2041 | 292 | 0.7451 | -0.5895 | -1.0121 | 0.7000 | 0.4226 | -151.4888 | -151.8154 | 0.2582 | 0.2463 |
67
+ | 0.6666 | 1.5052 | 365 | 0.6292 | -0.4920 | -0.8706 | 0.5 | 0.3786 | -150.0739 | -150.8403 | 0.2068 | 0.1950 |
68
+ | 0.5649 | 1.8062 | 438 | 0.6652 | -0.6961 | -1.0296 | 0.6000 | 0.3335 | -151.6640 | -152.8809 | 0.1043 | 0.0914 |
69
+ | 0.3129 | 2.1072 | 511 | 0.8072 | -1.2644 | -1.5342 | 0.6000 | 0.2698 | -156.7100 | -158.5638 | 0.0071 | -0.0060 |
70
+ | 0.0785 | 2.4082 | 584 | 1.0289 | -2.0249 | -2.2745 | 0.6000 | 0.2496 | -164.1127 | -166.1691 | -0.1558 | -0.1700 |
71
+ | 0.1698 | 2.7093 | 657 | 1.0059 | -1.9822 | -2.2494 | 0.6000 | 0.2673 | -163.8624 | -165.7420 | -0.1662 | -0.1805 |
72
+
73
+
74
+ ### Framework versions
75
+
76
+ - PEFT 0.12.0
77
+ - Transformers 4.44.0
78
+ - Pytorch 2.4.0+cu121
79
+ - Datasets 3.1.0
80
+ - Tokenizers 0.19.1