End of training
Browse files
README.md
ADDED
@@ -0,0 +1,80 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: llama2
|
3 |
+
base_model: meta-llama/Llama-2-7b-hf
|
4 |
+
tags:
|
5 |
+
- trl
|
6 |
+
- dpo
|
7 |
+
- generated_from_trainer
|
8 |
+
library_name: peft
|
9 |
+
model-index:
|
10 |
+
- name: Llama-2-7b-hf-DPO-LookAhead-5_TTree1.4_TT0.9_TP0.7_TE0.2_V5
|
11 |
+
results: []
|
12 |
+
---
|
13 |
+
|
14 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
15 |
+
should probably proofread and complete it, then remove this comment. -->
|
16 |
+
|
17 |
+
# Llama-2-7b-hf-DPO-LookAhead-5_TTree1.4_TT0.9_TP0.7_TE0.2_V5
|
18 |
+
|
19 |
+
This model is a fine-tuned version of [meta-llama/Llama-2-7b-hf](https://huggingface.co/meta-llama/Llama-2-7b-hf) on the None dataset.
|
20 |
+
It achieves the following results on the evaluation set:
|
21 |
+
- Loss: 1.0059
|
22 |
+
- Rewards/chosen: -1.9822
|
23 |
+
- Rewards/rejected: -2.2494
|
24 |
+
- Rewards/accuracies: 0.6000
|
25 |
+
- Rewards/margins: 0.2673
|
26 |
+
- Logps/rejected: -163.8624
|
27 |
+
- Logps/chosen: -165.7420
|
28 |
+
- Logits/rejected: -0.1662
|
29 |
+
- Logits/chosen: -0.1805
|
30 |
+
|
31 |
+
## Model description
|
32 |
+
|
33 |
+
More information needed
|
34 |
+
|
35 |
+
## Intended uses & limitations
|
36 |
+
|
37 |
+
More information needed
|
38 |
+
|
39 |
+
## Training and evaluation data
|
40 |
+
|
41 |
+
More information needed
|
42 |
+
|
43 |
+
## Training procedure
|
44 |
+
|
45 |
+
### Training hyperparameters
|
46 |
+
|
47 |
+
The following hyperparameters were used during training:
|
48 |
+
- learning_rate: 5e-05
|
49 |
+
- train_batch_size: 2
|
50 |
+
- eval_batch_size: 2
|
51 |
+
- seed: 42
|
52 |
+
- gradient_accumulation_steps: 2
|
53 |
+
- total_train_batch_size: 4
|
54 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
55 |
+
- lr_scheduler_type: cosine
|
56 |
+
- lr_scheduler_warmup_steps: 10
|
57 |
+
- num_epochs: 3
|
58 |
+
|
59 |
+
### Training results
|
60 |
+
|
61 |
+
| Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen |
|
62 |
+
|:-------------:|:------:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:|
|
63 |
+
| 0.7395 | 0.3010 | 73 | 0.6468 | 0.0134 | -0.0847 | 0.9000 | 0.0981 | -142.2149 | -145.7866 | 0.3794 | 0.3670 |
|
64 |
+
| 0.7285 | 0.6021 | 146 | 0.6128 | 0.0518 | -0.1414 | 0.7000 | 0.1932 | -142.7814 | -145.4018 | 0.3432 | 0.3316 |
|
65 |
+
| 0.5488 | 0.9031 | 219 | 0.5896 | 0.0505 | -0.2094 | 0.8000 | 0.2599 | -143.4620 | -145.4151 | 0.3212 | 0.3092 |
|
66 |
+
| 0.4181 | 1.2041 | 292 | 0.7451 | -0.5895 | -1.0121 | 0.7000 | 0.4226 | -151.4888 | -151.8154 | 0.2582 | 0.2463 |
|
67 |
+
| 0.6666 | 1.5052 | 365 | 0.6292 | -0.4920 | -0.8706 | 0.5 | 0.3786 | -150.0739 | -150.8403 | 0.2068 | 0.1950 |
|
68 |
+
| 0.5649 | 1.8062 | 438 | 0.6652 | -0.6961 | -1.0296 | 0.6000 | 0.3335 | -151.6640 | -152.8809 | 0.1043 | 0.0914 |
|
69 |
+
| 0.3129 | 2.1072 | 511 | 0.8072 | -1.2644 | -1.5342 | 0.6000 | 0.2698 | -156.7100 | -158.5638 | 0.0071 | -0.0060 |
|
70 |
+
| 0.0785 | 2.4082 | 584 | 1.0289 | -2.0249 | -2.2745 | 0.6000 | 0.2496 | -164.1127 | -166.1691 | -0.1558 | -0.1700 |
|
71 |
+
| 0.1698 | 2.7093 | 657 | 1.0059 | -1.9822 | -2.2494 | 0.6000 | 0.2673 | -163.8624 | -165.7420 | -0.1662 | -0.1805 |
|
72 |
+
|
73 |
+
|
74 |
+
### Framework versions
|
75 |
+
|
76 |
+
- PEFT 0.12.0
|
77 |
+
- Transformers 4.44.0
|
78 |
+
- Pytorch 2.4.0+cu121
|
79 |
+
- Datasets 3.1.0
|
80 |
+
- Tokenizers 0.19.1
|