LBK95 commited on
Commit
f735c1e
·
verified ·
1 Parent(s): 67d9e51

End of training

Browse files
Files changed (1) hide show
  1. README.md +80 -0
README.md ADDED
@@ -0,0 +1,80 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: llama2
3
+ base_model: meta-llama/Llama-2-7b-hf
4
+ tags:
5
+ - trl
6
+ - dpo
7
+ - generated_from_trainer
8
+ library_name: peft
9
+ model-index:
10
+ - name: Llama-2-7b-hf-DPO-LookAhead-5_TTree1.4_TT0.9_TP0.7_TE0.2_V6
11
+ results: []
12
+ ---
13
+
14
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
15
+ should probably proofread and complete it, then remove this comment. -->
16
+
17
+ # Llama-2-7b-hf-DPO-LookAhead-5_TTree1.4_TT0.9_TP0.7_TE0.2_V6
18
+
19
+ This model is a fine-tuned version of [meta-llama/Llama-2-7b-hf](https://huggingface.co/meta-llama/Llama-2-7b-hf) on the None dataset.
20
+ It achieves the following results on the evaluation set:
21
+ - Loss: 1.0184
22
+ - Rewards/chosen: -1.6627
23
+ - Rewards/rejected: -1.4611
24
+ - Rewards/accuracies: 0.5
25
+ - Rewards/margins: -0.2016
26
+ - Logps/rejected: -142.2372
27
+ - Logps/chosen: -159.6465
28
+ - Logits/rejected: -0.2970
29
+ - Logits/chosen: -0.3265
30
+
31
+ ## Model description
32
+
33
+ More information needed
34
+
35
+ ## Intended uses & limitations
36
+
37
+ More information needed
38
+
39
+ ## Training and evaluation data
40
+
41
+ More information needed
42
+
43
+ ## Training procedure
44
+
45
+ ### Training hyperparameters
46
+
47
+ The following hyperparameters were used during training:
48
+ - learning_rate: 5e-05
49
+ - train_batch_size: 2
50
+ - eval_batch_size: 2
51
+ - seed: 42
52
+ - gradient_accumulation_steps: 2
53
+ - total_train_batch_size: 4
54
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
55
+ - lr_scheduler_type: cosine
56
+ - lr_scheduler_warmup_steps: 10
57
+ - num_epochs: 3
58
+
59
+ ### Training results
60
+
61
+ | Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen |
62
+ |:-------------:|:------:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:|
63
+ | 0.6746 | 0.3012 | 75 | 0.6658 | 0.0862 | 0.0321 | 0.75 | 0.0541 | -127.3055 | -142.1577 | 0.1821 | 0.1663 |
64
+ | 0.5925 | 0.6024 | 150 | 0.6506 | 0.1218 | 0.0304 | 0.5833 | 0.0914 | -127.3224 | -141.8020 | 0.1565 | 0.1401 |
65
+ | 0.7335 | 0.9036 | 225 | 0.7279 | -0.0626 | -0.0395 | 0.5 | -0.0231 | -128.0216 | -143.6459 | 0.1275 | 0.1103 |
66
+ | 0.6498 | 1.2048 | 300 | 0.7880 | -0.2917 | -0.2254 | 0.4167 | -0.0663 | -129.8807 | -145.9371 | 0.0678 | 0.0485 |
67
+ | 0.386 | 1.5060 | 375 | 0.7303 | -0.2014 | -0.2339 | 0.5 | 0.0325 | -129.9658 | -145.0339 | 0.0325 | 0.0140 |
68
+ | 0.2307 | 1.8072 | 450 | 0.8159 | -0.5206 | -0.4793 | 0.5 | -0.0412 | -132.4201 | -148.2257 | -0.0582 | -0.0797 |
69
+ | 0.1034 | 2.1084 | 525 | 0.9133 | -1.0254 | -0.8918 | 0.4167 | -0.1335 | -136.5451 | -153.2736 | -0.2025 | -0.2290 |
70
+ | 0.284 | 2.4096 | 600 | 1.0153 | -1.5972 | -1.3870 | 0.4167 | -0.2102 | -141.4962 | -158.9917 | -0.2790 | -0.3083 |
71
+ | 0.0599 | 2.7108 | 675 | 1.0184 | -1.6627 | -1.4611 | 0.5 | -0.2016 | -142.2372 | -159.6465 | -0.2970 | -0.3265 |
72
+
73
+
74
+ ### Framework versions
75
+
76
+ - PEFT 0.12.0
77
+ - Transformers 4.44.0
78
+ - Pytorch 2.4.0+cu121
79
+ - Datasets 3.1.0
80
+ - Tokenizers 0.19.1