End of training
Browse files
README.md
ADDED
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: peft
|
3 |
+
license: llama2
|
4 |
+
base_model: meta-llama/Llama-2-7b-hf
|
5 |
+
tags:
|
6 |
+
- trl
|
7 |
+
- dpo
|
8 |
+
- generated_from_trainer
|
9 |
+
model-index:
|
10 |
+
- name: Llama-2-7b-hf-DPO-LookAhead-5_TTree1.4_TT0.9_TP0.7_TE0.2_V7
|
11 |
+
results: []
|
12 |
+
---
|
13 |
+
|
14 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
15 |
+
should probably proofread and complete it, then remove this comment. -->
|
16 |
+
|
17 |
+
# Llama-2-7b-hf-DPO-LookAhead-5_TTree1.4_TT0.9_TP0.7_TE0.2_V7
|
18 |
+
|
19 |
+
This model is a fine-tuned version of [meta-llama/Llama-2-7b-hf](https://huggingface.co/meta-llama/Llama-2-7b-hf) on the None dataset.
|
20 |
+
It achieves the following results on the evaluation set:
|
21 |
+
- Loss: 0.4437
|
22 |
+
- Rewards/chosen: -1.5898
|
23 |
+
- Rewards/rejected: -2.7509
|
24 |
+
- Rewards/accuracies: 0.7000
|
25 |
+
- Rewards/margins: 1.1611
|
26 |
+
- Logps/rejected: -114.1047
|
27 |
+
- Logps/chosen: -92.5540
|
28 |
+
- Logits/rejected: -0.0729
|
29 |
+
- Logits/chosen: -0.0526
|
30 |
+
|
31 |
+
## Model description
|
32 |
+
|
33 |
+
More information needed
|
34 |
+
|
35 |
+
## Intended uses & limitations
|
36 |
+
|
37 |
+
More information needed
|
38 |
+
|
39 |
+
## Training and evaluation data
|
40 |
+
|
41 |
+
More information needed
|
42 |
+
|
43 |
+
## Training procedure
|
44 |
+
|
45 |
+
### Training hyperparameters
|
46 |
+
|
47 |
+
The following hyperparameters were used during training:
|
48 |
+
- learning_rate: 5e-05
|
49 |
+
- train_batch_size: 2
|
50 |
+
- eval_batch_size: 2
|
51 |
+
- seed: 42
|
52 |
+
- gradient_accumulation_steps: 2
|
53 |
+
- total_train_batch_size: 4
|
54 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
55 |
+
- lr_scheduler_type: cosine
|
56 |
+
- lr_scheduler_warmup_steps: 10
|
57 |
+
- num_epochs: 3
|
58 |
+
|
59 |
+
### Training results
|
60 |
+
|
61 |
+
| Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen |
|
62 |
+
|:-------------:|:------:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:|
|
63 |
+
| 0.6702 | 0.2993 | 66 | 0.6613 | 0.0837 | -0.0035 | 0.7000 | 0.0872 | -86.6308 | -75.8190 | 0.3314 | 0.3469 |
|
64 |
+
| 0.686 | 0.5986 | 132 | 0.5646 | 0.0172 | -0.3322 | 0.8000 | 0.3494 | -89.9173 | -76.4838 | 0.3494 | 0.3651 |
|
65 |
+
| 0.7758 | 0.8980 | 198 | 0.5747 | 0.0543 | -0.2153 | 0.9000 | 0.2696 | -88.7488 | -76.1133 | 0.3694 | 0.3845 |
|
66 |
+
| 0.6695 | 1.1973 | 264 | 0.5693 | -0.2661 | -0.6699 | 0.7000 | 0.4038 | -93.2946 | -79.3173 | 0.3321 | 0.3466 |
|
67 |
+
| 0.5453 | 1.4966 | 330 | 0.5472 | -0.6038 | -1.1332 | 0.6000 | 0.5294 | -97.9278 | -82.6945 | 0.2266 | 0.2424 |
|
68 |
+
| 0.5922 | 1.7959 | 396 | 0.5142 | -0.9005 | -1.6462 | 0.6000 | 0.7457 | -103.0579 | -85.6614 | 0.1303 | 0.1477 |
|
69 |
+
| 0.2128 | 2.0952 | 462 | 0.4825 | -1.1082 | -1.9752 | 0.8000 | 0.8670 | -106.3474 | -87.7384 | 0.0713 | 0.0898 |
|
70 |
+
| 0.1372 | 2.3946 | 528 | 0.4425 | -1.4160 | -2.5347 | 0.8000 | 1.1187 | -111.9428 | -90.8164 | -0.0224 | -0.0028 |
|
71 |
+
| 0.3622 | 2.6939 | 594 | 0.4437 | -1.5113 | -2.6570 | 0.8000 | 1.1457 | -113.1660 | -91.7698 | -0.0636 | -0.0435 |
|
72 |
+
| 0.1555 | 2.9932 | 660 | 0.4437 | -1.5898 | -2.7509 | 0.7000 | 1.1611 | -114.1047 | -92.5540 | -0.0729 | -0.0526 |
|
73 |
+
|
74 |
+
|
75 |
+
### Framework versions
|
76 |
+
|
77 |
+
- PEFT 0.12.0
|
78 |
+
- Transformers 4.45.2
|
79 |
+
- Pytorch 2.4.0+cu121
|
80 |
+
- Datasets 3.2.0
|
81 |
+
- Tokenizers 0.20.3
|