LBK95 commited on
Commit
802b80f
·
verified ·
1 Parent(s): 28ef6bc

End of training

Browse files
Files changed (1) hide show
  1. README.md +80 -0
README.md ADDED
@@ -0,0 +1,80 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ license: llama2
4
+ base_model: meta-llama/Llama-2-7b-hf
5
+ tags:
6
+ - trl
7
+ - dpo
8
+ - generated_from_trainer
9
+ model-index:
10
+ - name: Llama-2-7b-hf-DPO-LookAhead-5_TTree1.4_TT0.9_TP0.7_TE0.2_V7
11
+ results: []
12
+ ---
13
+
14
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
15
+ should probably proofread and complete it, then remove this comment. -->
16
+
17
+ # Llama-2-7b-hf-DPO-LookAhead-5_TTree1.4_TT0.9_TP0.7_TE0.2_V7
18
+
19
+ This model is a fine-tuned version of [meta-llama/Llama-2-7b-hf](https://huggingface.co/meta-llama/Llama-2-7b-hf) on the None dataset.
20
+ It achieves the following results on the evaluation set:
21
+ - Loss: 0.7581
22
+ - Rewards/chosen: -1.7006
23
+ - Rewards/rejected: -1.8759
24
+ - Rewards/accuracies: 0.6000
25
+ - Rewards/margins: 0.1753
26
+ - Logps/rejected: -131.1391
27
+ - Logps/chosen: -96.3973
28
+ - Logits/rejected: -0.0046
29
+ - Logits/chosen: 0.0503
30
+
31
+ ## Model description
32
+
33
+ More information needed
34
+
35
+ ## Intended uses & limitations
36
+
37
+ More information needed
38
+
39
+ ## Training and evaluation data
40
+
41
+ More information needed
42
+
43
+ ## Training procedure
44
+
45
+ ### Training hyperparameters
46
+
47
+ The following hyperparameters were used during training:
48
+ - learning_rate: 5e-05
49
+ - train_batch_size: 2
50
+ - eval_batch_size: 2
51
+ - seed: 42
52
+ - gradient_accumulation_steps: 2
53
+ - total_train_batch_size: 4
54
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
55
+ - lr_scheduler_type: cosine
56
+ - lr_scheduler_warmup_steps: 10
57
+ - num_epochs: 3
58
+
59
+ ### Training results
60
+
61
+ | Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen |
62
+ |:-------------:|:------:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:|
63
+ | 0.7096 | 0.3004 | 67 | 0.6970 | -0.0217 | -0.0183 | 0.5 | -0.0034 | -112.5630 | -79.6082 | 0.6024 | 0.6487 |
64
+ | 0.6684 | 0.6009 | 134 | 0.6829 | -0.0429 | -0.0704 | 0.8000 | 0.0275 | -113.0842 | -79.8203 | 0.5780 | 0.6246 |
65
+ | 0.7283 | 0.9013 | 201 | 0.6982 | 0.0550 | 0.0616 | 0.6000 | -0.0067 | -111.7634 | -78.8413 | 0.5848 | 0.6319 |
66
+ | 0.2339 | 1.2018 | 268 | 0.6630 | -0.1631 | -0.2504 | 0.7000 | 0.0873 | -114.8840 | -81.0225 | 0.4681 | 0.5163 |
67
+ | 0.3526 | 1.5022 | 335 | 0.6523 | -0.5545 | -0.6837 | 0.6000 | 0.1292 | -119.2165 | -84.9362 | 0.3518 | 0.4006 |
68
+ | 0.2787 | 1.8027 | 402 | 0.6181 | -0.4772 | -0.6749 | 0.6000 | 0.1977 | -119.1291 | -84.1633 | 0.3107 | 0.3615 |
69
+ | 0.2577 | 2.1031 | 469 | 0.6856 | -1.0419 | -1.1941 | 0.5 | 0.1522 | -124.3209 | -89.8106 | 0.1666 | 0.2190 |
70
+ | 0.0942 | 2.4036 | 536 | 0.7344 | -1.5330 | -1.7182 | 0.6000 | 0.1852 | -129.5615 | -94.7212 | 0.0278 | 0.0822 |
71
+ | 0.0952 | 2.7040 | 603 | 0.7581 | -1.7006 | -1.8759 | 0.6000 | 0.1753 | -131.1391 | -96.3973 | -0.0046 | 0.0503 |
72
+
73
+
74
+ ### Framework versions
75
+
76
+ - PEFT 0.12.0
77
+ - Transformers 4.45.2
78
+ - Pytorch 2.4.0+cu121
79
+ - Datasets 3.2.0
80
+ - Tokenizers 0.20.3