End of training
Browse files
README.md
ADDED
@@ -0,0 +1,80 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: peft
|
3 |
+
license: llama2
|
4 |
+
base_model: meta-llama/Llama-2-7b-hf
|
5 |
+
tags:
|
6 |
+
- trl
|
7 |
+
- dpo
|
8 |
+
- generated_from_trainer
|
9 |
+
model-index:
|
10 |
+
- name: Llama-2-7b-hf-DPO-LookAhead-5_TTree1.4_TT0.9_TP0.7_TE0.2_V7
|
11 |
+
results: []
|
12 |
+
---
|
13 |
+
|
14 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
15 |
+
should probably proofread and complete it, then remove this comment. -->
|
16 |
+
|
17 |
+
# Llama-2-7b-hf-DPO-LookAhead-5_TTree1.4_TT0.9_TP0.7_TE0.2_V7
|
18 |
+
|
19 |
+
This model is a fine-tuned version of [meta-llama/Llama-2-7b-hf](https://huggingface.co/meta-llama/Llama-2-7b-hf) on the None dataset.
|
20 |
+
It achieves the following results on the evaluation set:
|
21 |
+
- Loss: 0.7581
|
22 |
+
- Rewards/chosen: -1.7006
|
23 |
+
- Rewards/rejected: -1.8759
|
24 |
+
- Rewards/accuracies: 0.6000
|
25 |
+
- Rewards/margins: 0.1753
|
26 |
+
- Logps/rejected: -131.1391
|
27 |
+
- Logps/chosen: -96.3973
|
28 |
+
- Logits/rejected: -0.0046
|
29 |
+
- Logits/chosen: 0.0503
|
30 |
+
|
31 |
+
## Model description
|
32 |
+
|
33 |
+
More information needed
|
34 |
+
|
35 |
+
## Intended uses & limitations
|
36 |
+
|
37 |
+
More information needed
|
38 |
+
|
39 |
+
## Training and evaluation data
|
40 |
+
|
41 |
+
More information needed
|
42 |
+
|
43 |
+
## Training procedure
|
44 |
+
|
45 |
+
### Training hyperparameters
|
46 |
+
|
47 |
+
The following hyperparameters were used during training:
|
48 |
+
- learning_rate: 5e-05
|
49 |
+
- train_batch_size: 2
|
50 |
+
- eval_batch_size: 2
|
51 |
+
- seed: 42
|
52 |
+
- gradient_accumulation_steps: 2
|
53 |
+
- total_train_batch_size: 4
|
54 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
55 |
+
- lr_scheduler_type: cosine
|
56 |
+
- lr_scheduler_warmup_steps: 10
|
57 |
+
- num_epochs: 3
|
58 |
+
|
59 |
+
### Training results
|
60 |
+
|
61 |
+
| Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen |
|
62 |
+
|:-------------:|:------:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:|
|
63 |
+
| 0.7096 | 0.3004 | 67 | 0.6970 | -0.0217 | -0.0183 | 0.5 | -0.0034 | -112.5630 | -79.6082 | 0.6024 | 0.6487 |
|
64 |
+
| 0.6684 | 0.6009 | 134 | 0.6829 | -0.0429 | -0.0704 | 0.8000 | 0.0275 | -113.0842 | -79.8203 | 0.5780 | 0.6246 |
|
65 |
+
| 0.7283 | 0.9013 | 201 | 0.6982 | 0.0550 | 0.0616 | 0.6000 | -0.0067 | -111.7634 | -78.8413 | 0.5848 | 0.6319 |
|
66 |
+
| 0.2339 | 1.2018 | 268 | 0.6630 | -0.1631 | -0.2504 | 0.7000 | 0.0873 | -114.8840 | -81.0225 | 0.4681 | 0.5163 |
|
67 |
+
| 0.3526 | 1.5022 | 335 | 0.6523 | -0.5545 | -0.6837 | 0.6000 | 0.1292 | -119.2165 | -84.9362 | 0.3518 | 0.4006 |
|
68 |
+
| 0.2787 | 1.8027 | 402 | 0.6181 | -0.4772 | -0.6749 | 0.6000 | 0.1977 | -119.1291 | -84.1633 | 0.3107 | 0.3615 |
|
69 |
+
| 0.2577 | 2.1031 | 469 | 0.6856 | -1.0419 | -1.1941 | 0.5 | 0.1522 | -124.3209 | -89.8106 | 0.1666 | 0.2190 |
|
70 |
+
| 0.0942 | 2.4036 | 536 | 0.7344 | -1.5330 | -1.7182 | 0.6000 | 0.1852 | -129.5615 | -94.7212 | 0.0278 | 0.0822 |
|
71 |
+
| 0.0952 | 2.7040 | 603 | 0.7581 | -1.7006 | -1.8759 | 0.6000 | 0.1753 | -131.1391 | -96.3973 | -0.0046 | 0.0503 |
|
72 |
+
|
73 |
+
|
74 |
+
### Framework versions
|
75 |
+
|
76 |
+
- PEFT 0.12.0
|
77 |
+
- Transformers 4.45.2
|
78 |
+
- Pytorch 2.4.0+cu121
|
79 |
+
- Datasets 3.2.0
|
80 |
+
- Tokenizers 0.20.3
|