File size: 8,227 Bytes
b4add42 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 |
---
license: gpl
---
# Counseling with CAMEL
### Setup
```
import argparse
import json
import multiprocessing
import re
import traceback
from abc import ABC, abstractmethod
from pathlib import Path
import requests
from langchain.prompts import PromptTemplate
from langchain_openai import OpenAI
```
### Define Agents
```
class Agent():
def __init__(self, vLLM_server, model_id):
self.llm = OpenAI(
temperature=0.0,
openai_api_key='EMPTY',
openai_api_base=vLLM_server,
max_tokens=512,
model=model_id
)
def generate(self):
pass
```
```
class CBTAgent(Agent):
def __init__(self, prompt, vLLM_server, model_id):
super().__init__(vLLM_server, model_id)
self.prompt_template = PromptTemplate(
input_variables=[
"client_information",
"reason_counseling",
'history',
],
template=prompt
)
def generate(self, client_information, reason, history):
history_text = '\n'.join(
[
f"{message['role'].capitalize()}: {message['message']}"
for message in history
]
)
prompt = self.prompt_template.format(
client_information=client_information,
reason_counseling=reason,
history= history_text
)
response = self.llm.invoke(prompt)
try:
cbt_technique = response.split("Counseling")[0].replace("\n", "")
except:
cbt_technique = None
try:
cbt_plan = response.split("Counseling planning:\n")[1].split("\nCBT")[0]
except:
cbt_plan = None
return cbt_technique, cbt_plan
```
```
class CounsleorAgent(Agent):
def __init__(self, prompt, vLLM_server, model_id, cbt_plan):
super().__init__(vLLM_server, model_id)
self.cbt_plan = cbt_plan
self.prompt_template = PromptTemplate(
input_variables=[
"client_information",
"reason_counseling",
"cbt_plan",
"history"
],
template=prompt
)
def generate(self, client_information, reason, history):
history_text = '\n'.join(
[
f"{message['role'].capitalize()}: {message['message']}"
for message in history
]
)
prompt = self.prompt_template.format(
client_information=client_information,
reason_counseling=reason,
cbt_plan=self.cbt_plan,
history=history_text,
)
# print(prompt)
response = self.llm.invoke(prompt)
# print(f"Response: {response}")
if "'message':" in response:
response = response.split("'message':")[1].split(", {")[0].replace("\"","").replace("]", "").replace("}", "")
return response.split("Counselor:")[-1].replace("\n", "").replace("\\", "").replace("\"","").strip()
```
### Define prompt templates
```
RESPONSE_PROMPT="""<|start_header_id|>system<|end_header_id|>
You are playing the role of a counselor in a psychological counseling session. Your task is to use the provided client information and counseling planning to generate the next counselor utterance in the dialogue. The goal is to create a natural and engaging response that builds on the previous conversation and aligns with the counseling plan.<|eot_id|><|start_header_id|>user<|end_header_id|>
Client Information:
{client_information}
Reason for seeking counseling:
{reason_counseling}
Counseling planning:
{cbt_plan}
Counseling Dialogue:
{history}<|eot_id|><|start_header_id|>assistant<|end_header_id|>
"""
```
```
CBT_PLAN_PROMPT="""<|start_header_id|>system<|end_header_id|>
You are a counselor specializing in CBT techniques. Your task is to use the provided client information, and dialogue to generate an appropriate CBT technique and a detailed counseling plan.<|eot_id|><|start_header_id|>user<|end_header_id|>
Types of CBT Techniques:
Efficiency Evaluation, Pie Chart Technique, Alternative Perspective, Decatastrophizing, Pros and Cons Analysis, Evidence-Based Questioning, Reality Testing, Continuum Technique, Changing Rules to Wishes, Behavior Experiment, Problem-Solving Skills Training, Systematic Exposure
Client Information:
{client_information}
Reason for seeking counseling:
{reason_counseling}
Counseling Dialogue:
{history}
Choose an appropriate CBT technique and create a counseling plan based on that technique.<|eot_id|><|start_header_id|>assistant<|end_header_id|>"""
```
### Start!
```
def collect_info(name, age, gender, occupation, education, matrital_status, family_details, reason):
CLINET_INFO = f"""Name: {name}
Age: {age}
Gender: {gender}
Occupation: {occupation}
Education: {education}
Marital Status: {matrital_status}
Family Details: {family_details}"""
REASON_FOR_COUNSELING = reason
HISTORY_INIT = f"Counselor: Hi {name}, it's nice to meet you. How can I assist you today?\nClient: "
return CLINET_INFO, REASON_FOR_COUNSELING, HISTORY_INIT
def start_demo(intake_form, reason, history_init):
model_id = "DLI-Lab/camel"
vLLM_server = ```YOUR vLLM SERVER```
max_turns = 20
print("Welcome to the Multi-Turn ClientAgent Demo!\n")
print(f"[Intake Form]")
print(intake_form)
print("Type 'exit' to quit the demo.\n")
print("====== Counseling Session ======\n")
first_response = history_init.split('Counselor: ')[-1].split('\nClient')[0]
print(f"Counselor: {first_response}")
num_turn = 0
while num_turn < max_turns:
if num_turn == 0:
user_input = input("You (Client): ")
# print(f"You (Client): {user_input}")
history_init = history_init + user_input
history = [
{"role": "Counselor", "message": history_init.split("Counselor: ")[-1].split("\nClient")[0]},
{"role": "Client", "message": history_init.split("Client: ")[-1]}
]
# print("CBT Planning")
CBT_Planner = CBTAgent(CBT_PLAN_PROMPT, vLLM_server, model_id)
cbt_technique, cbt_plan = CBT_Planner.generate(intake_form, reason, history)
# print(f"CBT Technique: {cbt_technique}")
# print(f"CBT Plan: {cbt_plan}")
num_turn+=1
else:
counselor = CounsleorAgent(RESPONSE_PROMPT, vLLM_server, model_id, cbt_plan)
counselor_response = counselor.generate(intake_form, reason, history)
print(f"Counselor: {counselor_response}")
history.append({"role": "Counselor", "message": counselor_response})
user_input = input("You (Client): ")
if user_input.lower() == 'exit':
print("\n====== Exiting the demo. Goodbye! ======\n")
break
print(f"You (Client): {user_input}")
history.append({"role": "Client", "message": user_input})
num_turn+=1
print("Demo completed.")
return cbt_plan, history
## Example
# name = "Laura"
# age = "45"
# gender = "female"
# occupation = "Office Job"
# education = "College Graduate"
# matrital_status = "Single"
# family_details = "Lives alone"
name = input("Let's begin the pre-counseling session. What is your name? ")
age = input("How old are you? ")
gender = input("What is your gender? (e.g., Male, Female)")
occupation = input("What is your occupation? ")
education = input("What is your highest level of education? (e.g., College Graduate)")
marital_status = input("What is your marital status? (e.g., Single, Married)")
family_details = input("Can you briefly describe your family situation? (e.g., Lives alone)")
reason = input("What brings you here for counseling? Please explain briefly. ")
CLINET_INFO, REASON_FOR_COUNSELING, HISTORY_INIT = collect_info(name, age, gender, occupation, education, matrital_status, family_details, reason)
cbt_plan, history = start_demo(CLINET_INFO, REASON_FOR_COUNSELING, HISTORY_INIT)
print(f"CBT Plan: {cbt_plan}\n\n")
for message in history:
print(f"{message['role']}: {message['message']}")
``` |