---
license: openrail++
language:
- en
pipeline_tag: text-to-image
tags:
- stable-diffusion
- stable-diffusion-diffusers
- stable-diffusion-xl
inference:
parameter:
negative_prompt: lowres, bad anatomy, bad hands, text, error, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality, normal quality, jpeg artifacts, signature, watermark, username, blurry
widget:
- text: >-
face focus, cute, masterpiece, best quality, 1girl, green hair, sweater, looking at viewer, upper body, beanie, outdoors, night, turtleneck
example_title: example 1girl
- text: >-
face focus, bishounen, masterpiece, best quality, 1boy, green hair, sweater, looking at viewer, upper body, beanie, outdoors, night, turtleneck
example_title: example 1boy
library_name: diffusers
datasets:
- Linaqruf/animagine-datasets
---
Animagine XL
## Overview
**Animagine XL** is a high-resolution, latent text-to-image diffusion model. The model has been fine-tuned using a learning rate of `4e-7` over 27000 global steps with a batch size of 16 on a curated dataset of superior-quality anime-style images. This model is derived from Stable Diffusion XL 1.0.
- Use it with the [`Stable Diffusion Webui`](https://github.com/AUTOMATIC1111/stable-diffusion-webui)
- Use it with 🧨 [`diffusers`](https://huggingface.co/docs/diffusers/index)
- Use it with the [`ComfyUI`](https://github.com/comfyanonymous/ComfyUI) **(recommended)**
Like other anime-style Stable Diffusion models, it also supports Danbooru tags to generate images.
e.g. _**face focus, cute, masterpiece, best quality, 1girl, green hair, sweater, looking at viewer, upper body, beanie, outdoors, night, turtleneck**_
## Features
1. High-Resolution Images: The model trained with 1024x1024 resolution. The model is trained using [NovelAI Aspect Ratio Bucketing Tool](https://github.com/NovelAI/novelai-aspect-ratio-bucketing) so that it can be trained at non-square resolutions.
2. Anime-styled Generation: Based on given text prompts, the model can create high quality anime-styled images.
3. Fine-Tuned Diffusion Process: The model utilizes a fine-tuned diffusion process to ensure high quality and unique image output.
## Model Details
- **Developed by:** [Linaqruf](https://github.com/Linaqruf)
- **Model type:** Diffusion-based text-to-image generative model
- **Model Description:** This is a model that can be used to generate and modify high quality anime-themed images based on text prompts.
- **License:** [CreativeML Open RAIL++-M License](https://huggingface.co/stabilityai/stable-diffusion-2/blob/main/LICENSE-MODEL)
- **Finetuned from model:** [Stable Diffusion XL 1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0)
## How to Use:
- Download `Animagine XL` [here](https://huggingface.co/Linaqruf/animagine-xl/resolve/main/animagine-xl.safetensors), the model is in `.safetensors` format.
- You need to use Danbooru-style tag as prompt instead of natural language, otherwise you will get realistic result instead of anime
- You can use any generic negative prompt or use the following suggested negative prompt to guide the model towards high aesthetic generationse:
```
lowres, bad anatomy, bad hands, text, error, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality, normal quality, jpeg artifacts, signature, watermark, username, blurry
```
- And, the following should also be prepended to prompts to get high aesthetic results:
```
masterpiece, best quality
```
- Use this cheat sheet to find the best resolution:
```
768 x 1344: Vertical (9:16)
915 x 1144: Portrait (4:5)
1024 x 1024: Square (1:1)
1182 x 886: Photo (4:3)
1254 x 836: Landscape (3:2)
1365 x 768: Widescreen (16:9)
1564 x 670: Cinematic (21:9)
```
## Gradio & Colab
We also support a [Gradio](https://github.com/gradio-app/gradio) Web UI and Colab with Diffusers to run **Animagine XL**:
[![Open In Spaces](https://camo.githubusercontent.com/00380c35e60d6b04be65d3d94a58332be5cc93779f630bcdfc18ab9a3a7d3388/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f25463025394625413425393725323048756767696e67253230466163652d5370616365732d626c7565)](https://huggingface.co/spaces/Linaqruf/Animagine-XL)
[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/#fileId=https%3A//huggingface.co/Linaqruf/animagine-xl/blob/main/Animagine_XL_demo.ipynb)
## 🧨 Diffusers
Make sure to upgrade diffusers to >= 0.18.2:
```
pip install diffusers --upgrade
```
In addition make sure to install `transformers`, `safetensors`, `accelerate` as well as the invisible watermark:
```
pip install invisible_watermark transformers accelerate safetensors
```
Running the pipeline (if you don't swap the scheduler it will run with the default **EulerDiscreteScheduler** in this example we are swapping it to **EulerAncestralDiscreteScheduler**:
```py
import torch
from torch import autocast
from diffusers import StableDiffusionXLPipeline, EulerAncestralDiscreteScheduler
model = "Linaqruf/animagine-xl"
pipe = StableDiffusionXLPipeline.from_pretrained(
model,
torch_dtype=torch.float16,
use_safetensors=True,
variant="fp16"
)
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
pipe.to('cuda')
prompt = "face focus, cute, masterpiece, best quality, 1girl, green hair, sweater, looking at viewer, upper body, beanie, outdoors, night, turtleneck"
negative_prompt = "lowres, bad anatomy, bad hands, text, error, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality, normal quality, jpeg artifacts, signature, watermark, username, blurry"
image = pipe(
prompt,
negative_prompt=negative_prompt,
width=1024,
height=1024,
guidance_scale=12,
target_size=(1024,1024),
original_size=(4096,4096),
num_inference_steps=50
).images[0]
image.save("anime_girl.png")
```
## Limitation
This model inherit Stable Diffusion XL 1.0 [limitation](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0#limitations)