Lykon commited on
Commit
bbfb896
·
1 Parent(s): 72c8503

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +40 -4
README.md CHANGED
@@ -1,15 +1,51 @@
1
  ---
2
  language:
3
  - en
4
- license: other
5
  tags:
6
  - stable-diffusion
 
7
  - text-to-image
8
  - art
9
  - artistic
10
  - diffusers
11
- inference: false
 
 
 
 
12
  ---
13
 
14
- For info: https://civitai.com/models/23900/anylora
15
- For info on AAM: https://civitai.com/models/84586/aam-anylora-anime-mix-anime-screencap-style-model
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  language:
3
  - en
4
+ license: creativeml-openrail-m
5
  tags:
6
  - stable-diffusion
7
+ - stable-diffusion-diffusers
8
  - text-to-image
9
  - art
10
  - artistic
11
  - diffusers
12
+ - anime
13
+ - dreamshaper
14
+ - lcm
15
+ duplicated_from: Lykon/AnyLoRA
16
+ pipeline_tag: text-to-image
17
  ---
18
 
19
+ # AnyLora
20
+
21
+ `lykon/AnyLoRA` is a Stable Diffusion model that has been fine-tuned on [runwayml/stable-diffusion-v1-5](https://huggingface.co/runwayml/stable-diffusion-v1-5).
22
+
23
+ Please consider supporting me:
24
+ - on [Patreon](https://www.patreon.com/Lykon275)
25
+ - or [buy me a coffee](https://snipfeed.co/lykon)
26
+
27
+ ## Diffusers
28
+
29
+ For more general information on how to run text-to-image models with 🧨 Diffusers, see [the docs](https://huggingface.co/docs/diffusers/using-diffusers/conditional_image_generation).
30
+
31
+ 1. Installation
32
+
33
+ ```
34
+ pip install diffusers transformers accelerate
35
+ ```
36
+
37
+ 2. Run
38
+ ```py
39
+ from diffusers import AutoPipelineForText2Image, DEISMultistepScheduler
40
+ import torch
41
+
42
+ pipe = AutoPipelineForText2Image.from_pretrained('lykon/AnyLoRA', torch_dtype=torch.float16, variant="fp16")
43
+ pipe.scheduler = DEISMultistepScheduler.from_config(pipe.scheduler.config)
44
+ pipe = pipe.to("cuda")
45
+
46
+ prompt = "portrait photo of muscular bearded guy in a worn mech suit, light bokeh, intricate, steel metal, elegant, sharp focus, soft lighting, vibrant colors"
47
+
48
+ generator = torch.manual_seed(0)
49
+ image = pipe(prompt, num_inference_steps=20, generator=generator).images[0]
50
+ image.save("./image.png")
51
+ ```