ppo-LunarLander-v2 / config.json
Militeee's picture
PPO trained on LunarLander-v2 for the Deep LR course
cfabedb verified
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x78ea58f72200>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x78ea58f72290>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x78ea58f72320>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x78ea58f723b0>", "_build": "<function ActorCriticPolicy._build at 0x78ea58f72440>", "forward": "<function ActorCriticPolicy.forward at 0x78ea58f724d0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x78ea58f72560>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x78ea58f725f0>", "_predict": "<function ActorCriticPolicy._predict at 0x78ea58f72680>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x78ea58f72710>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x78ea58f727a0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x78ea58f72830>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x78ea5911ab00>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1707252229380897604, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAHMJVD7rKds+8EaXvvotir5ZsSS7Kr0YvQAAAAAAAAAAACLwPFLHGD5sG4+9fntPvgJkBL05QiU9AAAAAAAAAABm51M9pCAtuRq4bzM6PHYubWVgu3hFqLMAAIA/AACAP4Comr27uJw92rW0PcWK/b1glBI9+wnvvAAAAAAAAAAAmlBQPj/jUD/pf5e9nd23vlrlij2MWy28AAAAAAAAAACaic28CuZiPBBqqL2UKwa+IEFVvUXqETwAAAAAAAAAADN2zTw9XC67+ocYvIYAbDx7AaQ8UzlNvQAAgD8AAIA/YGQRPgvD3D4OhCK+mqqGvlZUmbsiyKO9AAAAAAAAAADThQK+IwKmPzC9Eb/TrOy+4C4qvu4yUb4AAAAAAAAAAEIfs76CSRU/fnkEPjuKlL50rT6+LzC/PQAAAAAAAAAAzVF8vUnijT6c+Is9g3Zcvps3Dr0NPPc8AAAAAAAAAAAjOFS+OKStPiZ3nD7wP2W+DQLoPGi0gz0AAAAAAAAAADM2Aj0myKA/fU5LPV9Hyr5VAkE9979BPQAAAAAAAAAAMzsTvGxEpLv6+w69MBMfPMp6ED0yoAu9AACAPwAAgD/mLx69fgP2PQU5PTw6yUm+uUBmPJA6aTsAAAAAAAAAABopnr0pVBG6E8aPOUNUiTRIdis7SeOruAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG5hfOD8LrqMAWyUTRYBjAF0lEdAk8RrL6k693V9lChoBkdAbxhVVghKUWgHTRQBaAhHQJPEgj/uLJl1fZQoaAZHQHEoZ04iosJoB01FAWgIR0CTxS/YJ3PidX2UKGgGR0Bwe3eO4oZyaAdNGAFoCEdAk8XZowmE5HV9lChoBkdAciPSM98qnWgHTTIBaAhHQJPF80rK/211fZQoaAZHQG6qD+irT6VoB01RAWgIR0CT2cLux8lYdX2UKGgGR0Bvg8QCjk+5aAdNGwFoCEdAk9rgEMb3oXV9lChoBkdAb4MY77sOXmgHTYgBaAhHQJPbm+QEIPd1fZQoaAZHQHLGYG2TgVJoB00yAWgIR0CT3A93KSxJdX2UKGgGR0BteqzqrzXjaAdNGQFoCEdAk9zviT+vQnV9lChoBkdAcIKcFQl8gWgHTTQBaAhHQJPdbq3VkMF1fZQoaAZHQHGO2UKRdQhoB01hAWgIR0CT3413dKukdX2UKGgGR0BwGjwqiGnGaAdNYQFoCEdAk9/DOLR8dHV9lChoBkdAbWTbAUL2H2gHTSwBaAhHQJPhXn+yZ8d1fZQoaAZHQHCTlefI0ZZoB01GAWgIR0CT4h7Kq4pddX2UKGgGR0BwuTueBg/kaAdNKgFoCEdAk+IoqLCN0nV9lChoBkdAbznsTnJT2mgHTZEBaAhHQJPiinl4keJ1fZQoaAZHQHD1KMefZmJoB01OAWgIR0CT5CrYoRZmdX2UKGgGR0BwdQhKUVzqaAdNUAFoCEdAk+RasuFpPHV9lChoBkdAcdAR5kbxVmgHTScBaAhHQJPlN/jKgZl1fZQoaAZHQG8TNu+AVfxoB00JAWgIR0CT5e3yqdYodX2UKGgGR0Bu/lUMoc7yaAdNMAFoCEdAk+Zrm2b5M3V9lChoBkdAbj4nMt9QXWgHTT8BaAhHQJPnZAood+51fZQoaAZHQHKIMqWkaddoB008AWgIR0CT6DYvWYnfdX2UKGgGR0Bw23B3zMA4aAdNNwFoCEdAk+qYyXUpeHV9lChoBkdAcCWyeZof0WgHTYQBaAhHQJPrOeg+Qlt1fZQoaAZHQG+YZWaMJhRoB01pAWgIR0CT7Do2n88+dX2UKGgGR0Bx4s/OdGy5aAdNKQFoCEdAk+0N8zAN5XV9lChoBkdAcPrQo1DSgGgHTU8BaAhHQJPtQJjUd7x1fZQoaAZHQHF4Lvw3HaNoB01GAWgIR0CT7bxQizLPdX2UKGgGR0Bu+A5vLowFaAdNTAFoCEdAk+3pvYODrnV9lChoBkdAcnvsu3+db2gHTSMBaAhHQJPuszguRLd1fZQoaAZHQHJZUNvwVj9oB01HAWgIR0CT78+RYA80dX2UKGgGR0BxIfyBkI5YaAdNOQFoCEdAk/BcwUQCjnV9lChoBkdAbfIwoLG7z2gHTT0BaAhHQJPxoKG+K0l1fZQoaAZHQHHUvkNnXd1oB00+AWgIR0CT88gxrSE2dX2UKGgGR0BwHt1/2Cd0aAdNXgFoCEdAk/QEfT1CgXV9lChoBkdAbmarLhaTwGgHTZEBaAhHQJP0PuF6Avt1fZQoaAZHQG4Ij+irT6VoB00xAWgIR0CT9nWkadc0dX2UKGgGR0ByQ4YwZflZaAdNSAFoCEdAk/axtcfNinV9lChoBkdAb2/4gRsdk2gHTSQBaAhHQJP3z7yhBZ91fZQoaAZHQG8/rd30PH1oB01BAWgIR0CT+Bb1yvLYdX2UKGgGR0BxSZYhdMTOaAdNDAFoCEdAk/iWXLNfPXV9lChoBkdAcBLSowVTJmgHTToBaAhHQJP4zGOuJUJ1fZQoaAZHQHFl5HRTjvNoB002AWgIR0CT+UEXLvCudX2UKGgGR0BxTh2r4nF6aAdNRwFoCEdAk/meee4Cp3V9lChoBkdAXKaEJ0GNaWgHTegDaAhHQJP5z6TGHYZ1fZQoaAZHQGK0inHeaa1oB03oA2gIR0CT+lMuvlltdX2UKGgGR0BxQonWrfcfaAdNJAFoCEdAk/rHHvMKTnV9lChoBkdAbh9h2GIsRWgHTUIBaAhHQJP7JvES/TN1fZQoaAZHQHARiLqD9O1oB01BAWgIR0CT/JI+GGmDdX2UKGgGR0Bx5hF+d9UkaAdNDAFoCEdAk/y49TxXn3V9lChoBkdAbtH6qKgqVmgHTSABaAhHQJP9eyLQ5WB1fZQoaAZHQHGJzS5RTCNoB009AWgIR0CUEXYWtU4rdX2UKGgGR0Br+Vf/m1YyaAdNEwFoCEdAlBItP+GXX3V9lChoBkdAcpd+9alk6WgHTSMBaAhHQJQT5jc2zfJ1fZQoaAZHQHMAnwb2lEZoB00eAWgIR0CUFVzUZvUCdX2UKGgGR0BxU/3wkPc0aAdNIQFoCEdAlBZKiTMaCXV9lChoBkdAcfQyfthNNGgHTVIBaAhHQJQW1Y1YQrd1fZQoaAZHQHD7Zpeu3c5oB01YAWgIR0CUF1PEbYK6dX2UKGgGR0Bxno2aUiY+aAdNGAFoCEdAlBdo6nzg/HV9lChoBkdAcFKt3wCr92gHTUgBaAhHQJQXr+0gKWt1fZQoaAZHQHCDKk2xY7toB02XAWgIR0CUGOZjQRf4dX2UKGgGR0BwNRO6/ZdwaAdNawFoCEdAlBnGBvrGBHV9lChoBkdAcnYqwyIpIGgHTToBaAhHQJQbBQk5ZKZ1fZQoaAZHQHINYl2NedFoB005AWgIR0CUGyZPEbYLdX2UKGgGR0Br85ZuAI6baAdNIgFoCEdAlBtDkU9IPXV9lChoBkdAbzN23azu4WgHTXcBaAhHQJQbVVfeDWd1fZQoaAZHQG0rwvpQk5ZoB00iAmgIR0CUHC01IiC8dX2UKGgGR0BtYf8uSOinaAdNKQFoCEdAlBx2bLEDQ3V9lChoBkdAcPKFAmiQDGgHTXwBaAhHQJQf1Lg4wRJ1fZQoaAZHQHBDQOjIq9ZoB00bAWgIR0CUIAcH4XXRdX2UKGgGR0BxZMw8GLUDaAdNEgFoCEdAlCAggPmPo3V9lChoBkdAb7KbT+ee4GgHTVcBaAhHQJQgJiay8jB1fZQoaAZHQG2XfUnXumdoB01WAWgIR0CUIU9JBgNPdX2UKGgGR0Bw+f3qRlpXaAdNOQFoCEdAlCHqPn0TUXV9lChoBkdAcV5HaN+9amgHTRsBaAhHQJQiTpbD/ER1fZQoaAZHQG/jSVfNRm9oB01YAWgIR0CUIuUI9kjHdX2UKGgGR0BwTuDxsl9jaAdNKgFoCEdAlCOdf5ULlXV9lChoBkdAcF7RLsa86GgHTTsBaAhHQJQlUqgAZKp1fZQoaAZHQHFTGSZBsyloB008AWgIR0CUJXyxiXpodX2UKGgGR0Bvv1NDc/MXaAdNOQFoCEdAlCWQ4S6DoXV9lChoBkdAcDClxwQ18GgHTTMBaAhHQJQmqcVgx8F1fZQoaAZHQHCezEBKcutoB01CAWgIR0CUJsu5BkZrdX2UKGgGR0Bwbd+3H7xeaAdNigFoCEdAlCgkXxe9jHV9lChoBkdAbc8V0tAcDWgHTR0BaAhHQJQps31jAi51fZQoaAZHQG8MCzsyBTZoB000AWgIR0CUKogs9SuRdX2UKGgGR0BtrjVMEidKaAdNRAFoCEdAlCr/wEyLynV9lChoBkdAcRR4hllK9WgHTUYBaAhHQJQsdIbwSap1fZQoaAZHQHCo1CXyAhBoB01KAWgIR0CULUOvMbFTdX2UKGgGR0Bww3Z9NN8FaAdNRgFoCEdAlC2KHKwIMXV9lChoBkdAQALXrdFfA2gHS+doCEdAlC2Ikqtoz3V9lChoBkdAb9v101ZTymgHTUoBaAhHQJQuTlXA/LV1fZQoaAZHQHIY06T4cm1oB02qAWgIR0CULoCfYjB3dX2UKGgGR0Bwvw0DU3GXaAdNUAFoCEdAlC8w0GeMAHV9lChoBkdAcPTm8/UvwmgHTSUBaAhHQJQvpbu+h5B1fZQoaAZHQG1GPIn0CihoB00MAWgIR0CUMAq7yxzJdX2UKGgGR0Buy4Xl8w6AaAdNLgFoCEdAlDDnP3SKFnV9lChoBkdAcFyJYT0xumgHTXgBaAhHQJQx66z3RHB1fZQoaAZHQHCDWvW6K+BoB00wA2gIR0CUMvhnanJldWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu121", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}