File size: 16,715 Bytes
e1640d7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
<div align="center">
  <img src="figures/MiniMaxLogo.png" width="60%" alt="MiniMax-Text-01" />
</div>
<hr>

<div align="center" style="line-height: 1;">
  <a href="https://www.minimaxi.com/en" target="_blank" style="margin: 2px;">
    <img alt="Homepage" src="https://img.shields.io/badge/_Homepage-MiniMax-FF4040?style=flat-square&labelColor=2C3E50&logo=&logoWidth=20" style="display: inline-block; vertical-align: middle;"/>
  </a>
  <a href="https://huggingface.co/MiniMaxAI" target="_blank" style="margin: 2px;">
    <img alt="Hugging Face" src="https://img.shields.io/badge/🤗_Hugging_Face-MinMax-FF4040?style=flat-square&labelColor=2C3E50" style="display: inline-block; vertical-align: middle;"/>
  </a>
</div>
<div align="center" style="line-height: 1;">
  <a href="https://www.hailuo.ai/" target="_blank" style="margin: 2px;">
    <img alt="Chat" src="https://img.shields.io/badge/Chat-_Hailuo AI-FF4040?style=flat-square&labelColor=2C3E50&logo=&logoWidth=16" style="display: inline-block; vertical-align: middle;"/>
  </a>
  <a href="https://intl.minimaxi.com" style="margin: 2px;">
    <img alt="API" src="https://img.shields.io/badge/⚡_API-Platform-FF4040?style=flat-square&labelColor=2C3E50" style="display: inline-block; vertical-align: middle;"/>
  </a>
</div>
<div align="center" style="line-height: 1;">
  <a href="https://github.com/MiniMax-AI/MiniMax-01/blob/main/LICENSE" style="margin: 2px;">
    <img alt="License" src="https://img.shields.io/badge/📜_License-Model_Agreement-FF4040?style=flat-square&labelColor=2C3E50" style="display: inline-block; vertical-align: middle;"/>
  </a>
</div>


# MiniMax-Text-01

## 1. Introduction

MiniMax-Text-01 is a powerful language model with 456 billion total parameters, of which 45.9 billion are activated per token. To better unlock the long context capabilities of the model, MiniMax-Text-01 adopts a hybrid architecture that combines Lightning Attention, Softmax Attention and Mixture-of-Experts (MoE). Leveraging advanced parallel strategies and innovative compute-communication overlap methods—such as Linear Attention Sequence Parallelism Plus (LASP+), varlen ring attention, Expert Tensor Parallel (ETP), etc., MiniMax-Text-01's training context length is extended to 1 million tokens, and it can handle a context of up to 4 million tokens during the inference. On various academic benchmarks, MiniMax-Text-01 also demonstrates the performance of a top-tier model.

<p align="center">
  <img width="100%" src="figures/TextBench.png">
</p>

## 2. Model Architecture

The architecture of MiniMax-Text-01 is briefly described as follows:
- Total Parameters: 456B
- Activated Parameters per Token: 45.9B
- Number Layers: 80
- Hybrid Attention: a softmax attention is positioned after every 7 lightning attention.
  - Number of attention heads: 64
  - Attention head dimension: 128
- Mixture of Experts:
  - Number of experts: 32
  - Expert hidden dimension: 9216
  - Top-2 routing strategy
- Positional Encoding: Rotary Position Embedding (RoPE) applied to half of the attention head dimension with a base frequency of 10,000,000
- Hidden Size: 6144
- Vocab Size: 200,064

## 3. Evaluation

### Core Academic Benchmarks

| **Tasks**                     | **GPT-4o (11-20)** | **Claude-3.5-Sonnet (10-22)** | **Gemini-1.5-Pro (002)** | **Gemini-2.0-Flash (exp)** | **Qwen2.5-72B-Inst.** | **DeepSeek-V3** | **Llama-3.1-405B-Inst.** | **MiniMax-Text-01** |
|-------------------------------|--------------------|-------------------------------|--------------------------|----------------------------|-----------------------|-----------------|--------------------------|---------------------|
| **General**                   |                    |                               |                          |                            |                       |                 |                          |                     |
| MMLU<sup>*</sup>                      | 85.7               | 88.3                          | 86.8                     | 86.5                       | 86.1                  | 88.5        | **88.6**                 | 88.5                |
| MMLU-Pro<sup>*</sup>                  | 74.4               | **78.0**                      | 75.8                     | 76.4                       | 71.1                  | 75.9            | 73.3                     | 75.7                |
| SimpleQA                      | **39.0**           | 28.1                          | 23.4                     | 26.6                       | 10.3                  | 24.9            | 23.2                     | 23.7                |
| C-SimpleQA                    | 64.6               | 56.8                          | 59.4                     | 63.3                       | 52.2                  | 64.8            | 54.7                     | **67.4**            |
| IFEval _(avg)_                | 84.1               | **90.1**                      | 89.4                     | 88.4                       | 87.2                  | 87.3            | 86.4                     | 89.1                |
| Arena-Hard                    | **92.4**           | 87.6                          | 85.3                     | 72.7                       | 81.2                  | 91.4            | 63.5                     | 89.1                |
| **Reasoning**                 |                    |                               |                          |                            |                       |                 |                          |                     |
| GPQA<sup>*</sup> _(diamond)_          | 46.0               | **65.0**                      | 59.1                     | 62.1                       | 49.0                  | 59.1            | 50.7                     | 54.4                |
| DROP<sup>*</sup> _(F1)_               | 89.2               | 88.8                          | 89.2                     | 89.3                       | 85.0                  | 91.0        | **92.5**                 | 87.8                |
| **Mathematics**               |                    |                               |                          |                            |                       |                 |                          |                     |
| GSM8k<sup>*</sup>                     | 95.6               | **96.9**                      | 95.2                     | 95.4                       | 95.8                  | 96.7            | 96.7                     | 94.8                |
| MATH<sup>*</sup>                      | 76.6               | 74.1                          | **84.6**                 | 83.9                       | 81.8                  | **84.6**        | 73.8                     | 77.4                |
| **Coding**                    |                    |                               |                          |                            |                       |                 |                          |                     |
| MBPP +                        | 76.2               | 75.1                          | 75.4                     | 75.9                       | 77.0              | **78.8**        | 73.0                     | 71.7                |
| HumanEval                     | 90.2               | **93.7**                      | 86.6                     | 89.6                       | 86.6                  | 92.1            | 89.0                     | 86.9                |

<sup>*</sup> Evaluated following a _0-shot CoT_ setting.

### Long Benchmarks
#### 4M Needle In A Haystack Test
<p align="center">
  <img width="90%" src="figures/niah.png">
</p>

#### Ruler
| Model | 4k | 8k | 16k | 32k | 64k | 128k | 256k | 512k | 1M |
|-------|----|----|-----|-----|-----|------|------|------|----|
| **GPT-4o (11-20)** | **0.970** | 0.921 | 0.890 | 0.888 | 0.884 | - | - | - | - |
| **Claude-3.5-Sonnet (10-22)** | 0.965 | 0.960 | 0.957 | 0.950 | **0.952** | 0.938 | - | - | - |
| **Gemini-1.5-Pro (002)** | 0.962 | 0.960 | **0.960** | **0.958** | 0.938 | 0.917 | 0.916 | 0.861 | 0.850 |
| **Gemini-2.0-Flash (exp)** | 0.960 | 0.960 | 0.951 | 0.957 | 0.937 | 0.860 | 0.797 | 0.709 | - |
| **MiniMax-Text-01** | 0.963 | **0.961** | 0.953 | 0.954 | 0.943 | **0.947** | **0.945** | **0.928** | **0.910** |

#### LongBench v2
| **Model**                  | **overall** | **easy** | **hard** | **short** | **medium** | **long** |
|----------------------------|-------------|----------|----------|------------|------------|----------|
| Human                      | 53.7        | 100.0    | 25.1     | 47.2       | 59.1       | 53.7     |
| **w/ CoT**                 |             |          |          |            |            |          |
| GPT-4o (11-20)             | 51.4        | 54.2     | 49.7     | 59.6       | 48.6       | 43.5     |
| Claude-3.5-Sonnet (10-22)  | 46.7        | 55.2     | 41.5     | 53.9       | 41.9       | 44.4     |
| Deepseek-V3                | -           | -        | -        | -          | -          | -        |
| Qwen2.5-72B-Inst.          | 43.5        | 47.9     | 40.8     | 48.9       | 40.9       | 39.8     |
| **MiniMax-Text-01**        | **56.5**    | **66.1** | **50.5** | **61.7**   | **56.7**   | **47.2** |
| **w/o CoT**                |             |          |          |            |            |          |
| GPT-4o (11-20)             | 50.1        | 57.4     | 45.6     | 53.3       | 52.4       | 40.2     |
| Claude-3.5-Sonnet (10-22)  | 41.0        | 46.9     | 37.3     | 46.1       | 38.6       | 37.0     |
| Deepseek-V3                | 48.7        | -        | -        | -          | -          | -        |
| Qwen2.5-72B-Inst.          | 42.1        | 42.7     | 41.8     | 45.6       | 38.1       | **44.4** |
| **MiniMax-Text-01**        | **52.9**    | **60.9** | **47.9** | **58.9**   | **52.6**   | 43.5     |

#### MTOB
| **Context Type** | **no context** | **half book** | **full book** | **Δ half book** | **Δ full book** |
|------------------|----------------|---------------|---------------|------------------|-----------------|
| **eng → kalam (ChrF)** | | | | | |
| GPT-4o (11-20) | 9.90 | **54.30** | - | 44.40 | - |
| Claude-3.5-Sonnet (10-22) | 20.22 | 53.62 | 55.65 | 33.39 | 35.42 |
| Gemini-1.5-Pro (002) | 16.79 | 53.68 | **57.90** | 36.89 | 41.11 |
| Gemini-2.0-Flash (exp) | 12.20 | 49.50 | 53.30 | 37.30 | 41.10 |
| Qwen-Long | 16.55 | 48.48 | 45.94 | 31.92 | 29.39 |
| **MiniMax-Text-01** | 6.0 | 51.74 | 51.60 | **45.7** | **45.6** |
| **kalam → eng (BLEURT)** | | | | | |
| GPT-4o (11-20) | 33.20 | 58.30 | - | 25.10 | - |
| Claude-3.5-Sonnet (10-22) | 31.42 | 59.70 | 62.30 | 28.28 | 30.88 |
| Gemini-1.5-Pro (002) | 32.02 | **61.52** | **63.09** | **29.50** | **31.07** |
| Gemini-2.0-Flash (exp) | 33.80 | 57.50 | 57.00 | 23.70 | 23.20 |
| Qwen-Long | 30.13 | 53.14 | 32.15 | 23.01 | 2.02 |
| **MiniMax-Text-01** | 33.65 | 57.10 | 58.00 | 23.45 | 24.35 |


## 4. Quickstart
Here we provide a simple example of loading the tokenizer and model to generate content.
```python
from transformers import AutoModelForCausalLM, AutoTokenizer, AutoConfig, QuantoConfig, GenerationConfig

# load hf config
hf_config = AutoConfig.from_pretrained("MiniMax-Text-01", trust_remote_code=True)

# quantization config, int8 is recommended
quantization_config =  QuantoConfig(
            weights="int8",
            modules_to_not_convert=[
                "lm_head",
                "embed_tokens",
            ] + [f"model.layers.{i}.coefficient" for i in range(hf_config.num_hidden_layers)]
            + [f"model.layers.{i}.block_sparse_moe.gate" for i in range(hf_config.num_hidden_layers)]
        )

# set device map
device_map = {
    'model.embed_tokens': 'cuda:0',
    'model.norm': f'cuda:{world_size - 1}',
    'lm_head': f'cuda:{world_size - 1}'
}
# assume 8 GPUs
world_size = 8
layers_per_device = hf_config.num_hidden_layers // world_size
for i in range(world_size):
    for j in range(layers_per_device):
        device_map[f'model.layers.{i * layers_per_device + j}'] = f'cuda:{i}'

# load tokenizer
tokenizer = AutoTokenizer.from_pretrained("MiniMax-Text-01")
prompt = "Hello!"
messages = [
    {"role": "system", "content": [{"type": "text", "text": "You are a helpful assistant created by MiniMax based on MiniMax-Text-01 model."}]},
    {"role": "user", "content": [{"type": "text", "text": prompt}]},
]
text = tokenizer.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True
)
# tokenize and move to device
model_inputs = tokenizer(text, return_tensors="pt").to("cuda")

# load bfloat16 model, move to device, and apply quantization
quantized_model = AutoModelForCausalLM.from_pretrained(
    "MiniMax-Text-01",
    torch_dtype="bfloat16",
    device_map=device_map,
    quantization_config=quantization_config,
    trust_remote_code=True,
    offload_buffers=True,
)

# generate response
generation_config = GenerationConfig(
    max_new_tokens=20,
    eos_token_id=200020,
    use_cache=True,
)
generated_ids = quantized_model.generate(**model_inputs, generation_config=generation_config)
print(f"generated_ids: {generated_ids}")
generated_ids = [
    output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
```

## 5. Chatbot & API
For general use and evaluation, we provide a [Chatbot](https://www.hailuo.ai/) with online search capabilities and the [online API](https://intl.minimaxi.com) for developers.

Contact us at [[email protected]](mailto:[email protected]).