File size: 11,382 Bytes
cfde609
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
<div align="center">
  <img src="figures/MiniMaxLogo.png" width="60%" alt="MiniMax-Text-01" />
</div>
<hr>

<div align="center" style="line-height: 1;">
  <a href="https://www.minimaxi.com/en" target="_blank" style="margin: 2px;">
    <img alt="Homepage" src="https://img.shields.io/badge/_Homepage-MiniMax-FF4040?style=flat-square&labelColor=2C3E50&logo=&logoWidth=20" style="display: inline-block; vertical-align: middle;"/>
  </a>
  <a href="https://huggingface.co/MiniMaxAI" target="_blank" style="margin: 2px;">
    <img alt="Hugging Face" src="https://img.shields.io/badge/🤗_Hugging_Face-MinMax-FF4040?style=flat-square&labelColor=2C3E50" style="display: inline-block; vertical-align: middle;"/>
  </a>
</div>
<div align="center" style="line-height: 1;">
  <a href="https://www.hailuo.ai/" target="_blank" style="margin: 2px;">
    <img alt="Chat" src="https://img.shields.io/badge/Chat-_Hailuo AI-FF4040?style=flat-square&labelColor=2C3E50&logo=&logoWidth=16" style="display: inline-block; vertical-align: middle;"/>
  </a>
  <a href="https://intl.minimaxi.com" style="margin: 2px;">
    <img alt="API" src="https://img.shields.io/badge/⚡_API-Platform-FF4040?style=flat-square&labelColor=2C3E50" style="display: inline-block; vertical-align: middle;"/>
  </a>
</div>
<div align="center" style="line-height: 1;">
  <a href="https://github.com/MiniMax-AI/MiniMax-01/blob/main/LICENSE" style="margin: 2px;">
    <img alt="License" src="https://img.shields.io/badge/📜_License-Model_Agreement-FF4040?style=flat-square&labelColor=2C3E50" style="display: inline-block; vertical-align: middle;"/>
  </a>
</div>

# MiniMax-VL-01

## 1. Introduction
We are delighted to introduce our **MiniMax-VL-01** model. It adopts the “ViT-MLP-LLM” framework, which is a commonly used technique in the field of multimodal large language models. The model is initialized and trained with three key parts: a 303-million-parameter Vision Transformer (ViT) for visual encoding, a randomly initialized two-layer MLP projector for image adaptation, and the MiniMax-Text-01 as the base LLM.
MiniMax-VL-01 has a notable dynamic resolution feature. Input images are resized per a pre-set grid, with resolutions from 336×336 to 2016×2016, keeping a 336×336 thumbnail. The resized images are split into non-overlapping patches of the same size. These patches and the thumbnail are encoded separately and then combined for a full image representation.
The training data for MiniMax-VL-01 consists of caption, description, and instruction data. The Vision Transformer (ViT) is trained on 694 million image-caption pairs from scratch. Across four distinct stages of the training pipeline, a total of 512 billion tokens are processed, leveraging this vast amount of data to endow the model with strong capabilities.
Finally, MiniMax-VL-01 has reached top-level performance on multimodal leaderboards, demonstrating its edge and dependability in complex multimodal tasks.


<p align="center">
  <img width="100%" src="figures/VisionBench.png">
</p>


## 2. Evaluation

| Tasks | GPT-4o<br>(11-20) | Claude-3.5-Sonnet (10-22) | Gemini-1.5-Pro (002) | Gemini-2.0-Flash (exp) | Qwen2-VL-72B-Inst. | InternVL2.5-78B | LLama-3.2-90B | MiniMax-VL-01 |
| ---- | ---- | ---- | ---- | ---- | ---- | ---- | ---- | ---- |
| **Knowledge** |  |  |  |  |  |  |  |  |
| MMMU<sup>*</sup> | 63.5 | **72.0** | 68.4  | 70.6  | 64.5 | 66.5 | 62.1 | 68.5 |
| MMMU-Pro<sup>*</sup>  |  54.5 | 54.7 | 50.9 | **57.0**  | 43.2 | 47.3 | 36.0 | 52.7 |
| **Visual Q&A** |  |  |  |  |  |  |  |  |
| ChartQA<sup>*</sup><sub>relaxed</sub> | 88.1 | 90.8 | 88.7 | 88.3 | 91.2 | 91.5 | 85.5 | **91.7** |
| DocVQA<sup>*</sup>  | 91.1 | 94.2 | 91.5 | 92.9 | **97.1** | 96.1 | 90.1 | 96.4 |
| OCRBench | 806 | 790 | 800 | 846  | 856 | 847 | 805 | **865** |
| **Mathematics & Sciences** ||  |  |  |  |  |  |  |
| AI2D<sup>*</sup> | 83.1 | 82.0 | 80.9 | 85.1 | 84.4 | **86.8** | 78.9 | 83.3 |
| MathVista<sup>*</sup>  | 62.1 | 65.4 | 70.6 | **73.1** | 69.6 | 68.4 | 57.3 | 68.6 |
| OlympiadBench<sub>full</sub> | 25.2 | 28.4 | 32.1 | **46.1** | 21.9 | 25.1 | 19.3 | 24.2 |
|**Long Context**|||||
|M-LongDoc<sub>acc</sub>| **41.4** | 31.4 | 26.2 | 31.4 | 11.6 | 19.7 | 13.9 | 32.5 |
|**Comprehensive**|||||
|MEGA-Bench<sub>macro</sub> | 49.4 | 51.4 | 45.9 | **53.9** | 46.8 | 45.3 | 19.9 | 47.4 |
|**User Experience**|||||
|In-house Benchmark | 62.3 | 47.0 | 49.2 | **72.1** | 40.6 | 34.8 | 13.6 | 56.6 |

<sup>*</sup> Evaluated following a _0-shot CoT_ setting.


## 3. Quickstart
Here we provide a simple example of loading the tokenizer and model to generate content.
```python
from transformers import AutoModelForCausalLM, AutoProcessor, AutoConfig, QuantoConfig, GenerationConfig
import torch
import json
import os
from PIL import Image

# load hf config
hf_config = AutoConfig.from_pretrained("MiniMax-VL-01", trust_remote_code=True)

# quantization config, int8 is recommended
quantization_config =  QuantoConfig(
            weights="int8",
            modules_to_not_convert=[
                "vision_tower",
                "image_newline",
                "multi_modal_projector",
                "lm_head",
                "embed_tokens",
            ] + [f"model.layers.{i}.coefficient" for i in range(hf_config.text_config.num_hidden_layers)]
            + [f"model.layers.{i}.block_sparse_moe.gate" for i in range(hf_config.text_config.num_hidden_layers)]
        )

# set device map
model_safetensors_index_path = os.path.join("MiniMax-VL-01", "model.safetensors.index.json")
with open(model_safetensors_index_path, "r") as f:
    model_safetensors_index = json.load(f)
weight_map = model_safetensors_index['weight_map']
vision_map = {}
for key, value in weight_map.items():
    if 'vision_tower' in key or 'image_newline' in key or 'multi_modal_projector' in key:
        new_key = key.replace('.weight','').replace('.bias','')
        if new_key not in vision_map:
            vision_map[new_key] = value
# assume 8 GPUs
world_size = 8
device_map = {
    'language_model.model.embed_tokens': 'cuda:0',
    'language_model.model.norm': f'cuda:{world_size - 1}',
    'language_model.lm_head': f'cuda:{world_size - 1}'
}
for key, value in vision_map.items():
    device_map[key] = f'cuda:0'
device_map['vision_tower.vision_model.post_layernorm'] = f'cuda:0'
layers_per_device = hf_config.text_config.num_hidden_layers // world_size
for i in range(world_size):
    for j in range(layers_per_device):
        device_map[f'language_model.model.layers.{i * layers_per_device + j}'] = f'cuda:{i}'

# load processor
processor = AutoProcessor.from_pretrained("MiniMax-VL-01", trust_remote_code=True)
messages = [
    {"role": "system", "content": [{"type": "text", "text": "You are a helpful assistant created by MiniMax based on MiniMax-VL-01 model."}]},
    {"role": "user", "content": [{"type": "image", "image": "placeholder"},{"type": "text", "text": "Describe this image."}]},
]
prompt = processor.tokenizer.apply_chat_template(
    messages, tokenize=False, add_generation_prompt=True
)
raw_image = Image.open("figures/image.jpg")
# tokenize and move to device
model_inputs = processor(images=[raw_image], text=prompt, return_tensors='pt').to('cuda').to(torch.bfloat16)

# load bfloat16 model, move to device, and apply quantization
quantized_model = AutoModelForCausalLM.from_pretrained(
    "MiniMax-VL-01",
    torch_dtype="bfloat16",
    device_map=device_map,
    quantization_config=quantization_config,
    trust_remote_code=True,
    offload_buffers=True,
)
generation_config = GenerationConfig(
    max_new_tokens=100,
    eos_token_id=200020,
    use_cache=True,
)

# generate response
generated_ids = quantized_model.generate(**model_inputs, generation_config=generation_config)
print(f"generated_ids: {generated_ids}")
generated_ids = [
    output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]
response = processor.tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
```

## 4. Chatbot & API
For general use and evaluation, we provide a [Chatbot](https://www.hailuo.ai/) with online search capabilities and the [online API](https://intl.minimaxi.com) for developers.

Contact us at [[email protected]](mailto:[email protected]).