NickyNicky commited on
Commit
d2bcf61
·
verified ·
1 Parent(s): 830834f

Add new SentenceTransformer model

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ 0_StaticEmbedding/tokenizer.json filter=lfs diff=lfs merge=lfs -text
0_StaticEmbedding/model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:83b3c768c8daf12b84414591f410f1c4762154ef8e26c458b4581a77b9a41192
3
+ size 1048576096
0_StaticEmbedding/tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5f7eee611703c5ce5d1eee32d9cdcfe465647b8aff0c1dfb3bed7ad7dbb05060
3
+ size 34362873
README.md ADDED
@@ -0,0 +1,492 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ tags:
5
+ - sentence-transformers
6
+ - sentence-similarity
7
+ - feature-extraction
8
+ - generated_from_trainer
9
+ - dataset_size:3012496
10
+ - loss:MatryoshkaLoss
11
+ - loss:MultipleNegativesRankingLoss
12
+ widget:
13
+ - source_sentence: how to sign legal documents as power of attorney?
14
+ sentences:
15
+ - 'After the principal''s name, write “by” and then sign your own name. Under or
16
+ after the signature line, indicate your status as POA by including any of the
17
+ following identifiers: as POA, as Agent, as Attorney in Fact or as Power of Attorney.'
18
+ - '[''From the Home screen, swipe left to Apps.'', ''Tap Transfer my Data.'', ''Tap
19
+ Menu (...).'', ''Tap Export to SD card.'']'
20
+ - Ginger Dank Nugs (Grape) - 350mg. Feast your eyes on these unique and striking
21
+ gourmet chocolates; Coco Nugs created by Ginger Dank. Crafted to resemble perfect
22
+ nugs of cannabis, each of the 10 buds contains 35mg of THC. ... This is a perfect
23
+ product for both cannabis and chocolate lovers, who appreciate a little twist.
24
+ - source_sentence: how to delete vdom in fortigate?
25
+ sentences:
26
+ - Go to System -> VDOM -> VDOM2 and select 'Delete'. This VDOM is now successfully
27
+ removed from the configuration.
28
+ - 'Both combination birth control pills and progestin-only pills may cause headaches
29
+ as a side effect. Additional side effects of birth control pills may include:
30
+ breast tenderness. nausea.'
31
+ - White cheese tends to show imperfections more readily and as consumers got more
32
+ used to yellow-orange cheese, it became an expected option. Today, many cheddars
33
+ are yellow. While most cheesemakers use annatto, some use an artificial coloring
34
+ agent instead, according to Sachs.
35
+ - source_sentence: where are earthquakes most likely to occur on earth?
36
+ sentences:
37
+ - Zelle in the Bank of the America app is a fast, safe, and easy way to send and
38
+ receive money with family and friends who have a bank account in the U.S., all
39
+ with no fees. Money moves in minutes directly between accounts that are already
40
+ enrolled with Zelle.
41
+ - It takes about 3 days for a spacecraft to reach the Moon. During that time a spacecraft
42
+ travels at least 240,000 miles (386,400 kilometers) which is the distance between
43
+ Earth and the Moon.
44
+ - Most earthquakes occur along the edge of the oceanic and continental plates. The
45
+ earth's crust (the outer layer of the planet) is made up of several pieces, called
46
+ plates. The plates under the oceans are called oceanic plates and the rest are
47
+ continental plates.
48
+ - source_sentence: fix iphone is disabled connect to itunes without itunes?
49
+ sentences:
50
+ - To fix a disabled iPhone or iPad without iTunes, you have to erase your device.
51
+ Click on the "Erase iPhone" option and confirm your selection. Wait for a while
52
+ as the "Find My iPhone" feature will remotely erase your iOS device. Needless
53
+ to say, it will also disable its lock.
54
+ - How Māui brought fire to the world. One evening, after eating a hearty meal, Māui
55
+ lay beside his fire staring into the flames. ... In the middle of the night, while
56
+ everyone was sleeping, Māui went from village to village and extinguished all
57
+ the fires until not a single fire burned in the world.
58
+ - Angry Orchard makes a variety of year-round craft cider styles, including Angry
59
+ Orchard Crisp Apple, a fruit-forward hard cider that balances the sweetness of
60
+ culinary apples with dryness and bright acidity of bittersweet apples for a complex,
61
+ refreshing taste.
62
+ - source_sentence: how to reverse a video on tiktok that's not yours?
63
+ sentences:
64
+ - '[''Tap "Effects" at the bottom of your screen — it\''s an icon that looks like
65
+ a clock. Open the Effects menu. ... '', ''At the end of the new list that appears,
66
+ tap "Time." Select "Time" at the end. ... '', ''Select "Reverse" — you\''ll then
67
+ see a preview of your new, reversed video appear on the screen.'']'
68
+ - Franchise Facts Poke Bar has a franchise fee of up to $30,000, with a total initial
69
+ investment range of $157,800 to $438,000. The initial cost of a franchise includes
70
+ several fees -- Unlock this franchise to better understand the costs such as training
71
+ and territory fees.
72
+ - Relative age is the age of a rock layer (or the fossils it contains) compared
73
+ to other layers. It can be determined by looking at the position of rock layers.
74
+ Absolute age is the numeric age of a layer of rocks or fossils. Absolute age can
75
+ be determined by using radiometric dating.
76
+ datasets:
77
+ - sentence-transformers/gooaq
78
+ pipeline_tag: sentence-similarity
79
+ library_name: sentence-transformers
80
+ ---
81
+
82
+ # SentenceTransformer
83
+
84
+ This is a [sentence-transformers](https://www.SBERT.net) model trained on the [gooaq](https://huggingface.co/datasets/sentence-transformers/gooaq) dataset. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
85
+
86
+ ## Model Details
87
+
88
+ ### Model Description
89
+ - **Model Type:** Sentence Transformer
90
+ <!-- - **Base model:** [Unknown](https://huggingface.co/unknown) -->
91
+ - **Maximum Sequence Length:** inf tokens
92
+ - **Output Dimensionality:** 1024 dimensions
93
+ - **Similarity Function:** Cosine Similarity
94
+ - **Training Dataset:**
95
+ - [gooaq](https://huggingface.co/datasets/sentence-transformers/gooaq)
96
+ - **Language:** en
97
+ <!-- - **License:** Unknown -->
98
+
99
+ ### Model Sources
100
+
101
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
102
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
103
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
104
+
105
+ ### Full Model Architecture
106
+
107
+ ```
108
+ SentenceTransformer(
109
+ (0): StaticEmbedding(
110
+ (embedding): EmbeddingBag(256000, 1024, mode='mean')
111
+ )
112
+ )
113
+ ```
114
+
115
+ ## Usage
116
+
117
+ ### Direct Usage (Sentence Transformers)
118
+
119
+ First install the Sentence Transformers library:
120
+
121
+ ```bash
122
+ pip install -U sentence-transformers
123
+ ```
124
+
125
+ Then you can load this model and run inference.
126
+ ```python
127
+ from sentence_transformers import SentenceTransformer
128
+
129
+ # Download from the 🤗 Hub
130
+ model = SentenceTransformer("NickyNicky/StaticEmbedding-MatryoshkaLoss-gemma-2-2b-gooaq-en")
131
+ # Run inference
132
+ sentences = [
133
+ "how to reverse a video on tiktok that's not yours?",
134
+ '[\'Tap "Effects" at the bottom of your screen — it\\\'s an icon that looks like a clock. Open the Effects menu. ... \', \'At the end of the new list that appears, tap "Time." Select "Time" at the end. ... \', \'Select "Reverse" — you\\\'ll then see a preview of your new, reversed video appear on the screen.\']',
135
+ 'Relative age is the age of a rock layer (or the fossils it contains) compared to other layers. It can be determined by looking at the position of rock layers. Absolute age is the numeric age of a layer of rocks or fossils. Absolute age can be determined by using radiometric dating.',
136
+ ]
137
+ embeddings = model.encode(sentences)
138
+ print(embeddings.shape)
139
+ # [3, 1024]
140
+
141
+ # Get the similarity scores for the embeddings
142
+ similarities = model.similarity(embeddings, embeddings)
143
+ print(similarities.shape)
144
+ # [3, 3]
145
+ ```
146
+
147
+ <!--
148
+ ### Direct Usage (Transformers)
149
+
150
+ <details><summary>Click to see the direct usage in Transformers</summary>
151
+
152
+ </details>
153
+ -->
154
+
155
+ <!--
156
+ ### Downstream Usage (Sentence Transformers)
157
+
158
+ You can finetune this model on your own dataset.
159
+
160
+ <details><summary>Click to expand</summary>
161
+
162
+ </details>
163
+ -->
164
+
165
+ <!--
166
+ ### Out-of-Scope Use
167
+
168
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
169
+ -->
170
+
171
+ <!--
172
+ ## Bias, Risks and Limitations
173
+
174
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
175
+ -->
176
+
177
+ <!--
178
+ ### Recommendations
179
+
180
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
181
+ -->
182
+
183
+ ## Training Details
184
+
185
+ ### Training Dataset
186
+
187
+ #### gooaq
188
+
189
+ * Dataset: [gooaq](https://huggingface.co/datasets/sentence-transformers/gooaq) at [b089f72](https://huggingface.co/datasets/sentence-transformers/gooaq/tree/b089f728748a068b7bc5234e5bcf5b25e3c8279c)
190
+ * Size: 3,012,496 training samples
191
+ * Columns: <code>question</code> and <code>answer</code>
192
+ * Approximate statistics based on the first 1000 samples:
193
+ | | question | answer |
194
+ |:--------|:-----------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------|
195
+ | type | string | string |
196
+ | details | <ul><li>min: 18 characters</li><li>mean: 43.23 characters</li><li>max: 96 characters</li></ul> | <ul><li>min: 55 characters</li><li>mean: 253.36 characters</li><li>max: 371 characters</li></ul> |
197
+ * Samples:
198
+ | question | answer |
199
+ |:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
200
+ | <code>what is the difference between broilers and layers?</code> | <code>An egg laying poultry is called egger or layer whereas broilers are reared for obtaining meat. So a layer should be able to produce more number of large sized eggs, without growing too much. On the other hand, a broiler should yield more meat and hence should be able to grow well.</code> |
201
+ | <code>what is the difference between chronological order and spatial order?</code> | <code>As a writer, you should always remember that unlike chronological order and the other organizational methods for data, spatial order does not take into account the time. Spatial order is primarily focused on the location. All it does is take into account the location of objects and not the time.</code> |
202
+ | <code>is kamagra same as viagra?</code> | <code>Kamagra is thought to contain the same active ingredient as Viagra, sildenafil citrate. In theory, it should work in much the same way as Viagra, taking about 45 minutes to take effect, and lasting for around 4-6 hours. However, this will vary from person to person.</code> |
203
+ * Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
204
+ ```json
205
+ {
206
+ "loss": "MultipleNegativesRankingLoss",
207
+ "matryoshka_dims": [
208
+ 1024,
209
+ 768,
210
+ 512,
211
+ 256,
212
+ 128,
213
+ 64,
214
+ 32
215
+ ],
216
+ "matryoshka_weights": [
217
+ 1,
218
+ 1,
219
+ 1,
220
+ 1,
221
+ 1,
222
+ 1,
223
+ 1
224
+ ],
225
+ "n_dims_per_step": -1
226
+ }
227
+ ```
228
+
229
+ ### Evaluation Dataset
230
+
231
+ #### gooaq
232
+
233
+ * Dataset: [gooaq](https://huggingface.co/datasets/sentence-transformers/gooaq) at [b089f72](https://huggingface.co/datasets/sentence-transformers/gooaq/tree/b089f728748a068b7bc5234e5bcf5b25e3c8279c)
234
+ * Size: 3,012,496 evaluation samples
235
+ * Columns: <code>question</code> and <code>answer</code>
236
+ * Approximate statistics based on the first 1000 samples:
237
+ | | question | answer |
238
+ |:--------|:-----------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------|
239
+ | type | string | string |
240
+ | details | <ul><li>min: 18 characters</li><li>mean: 43.17 characters</li><li>max: 98 characters</li></ul> | <ul><li>min: 51 characters</li><li>mean: 254.12 characters</li><li>max: 360 characters</li></ul> |
241
+ * Samples:
242
+ | question | answer |
243
+ |:-----------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
244
+ | <code>how do i program my directv remote with my tv?</code> | <code>['Press MENU on your remote.', 'Select Settings & Help > Settings > Remote Control > Program Remote.', 'Choose the device (TV, audio, DVD) you wish to program. ... ', 'Follow the on-screen prompts to complete programming.']</code> |
245
+ | <code>are rodrigues fruit bats nocturnal?</code> | <code>Before its numbers were threatened by habitat destruction, storms, and hunting, some of those groups could number 500 or more members. Sunrise, sunset. Rodrigues fruit bats are most active at dawn, at dusk, and at night.</code> |
246
+ | <code>why does your heart rate increase during exercise bbc bitesize?</code> | <code>During exercise there is an increase in physical activity and muscle cells respire more than they do when the body is at rest. The heart rate increases during exercise. The rate and depth of breathing increases - this makes sure that more oxygen is absorbed into the blood, and more carbon dioxide is removed from it.</code> |
247
+ * Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
248
+ ```json
249
+ {
250
+ "loss": "MultipleNegativesRankingLoss",
251
+ "matryoshka_dims": [
252
+ 1024,
253
+ 768,
254
+ 512,
255
+ 256,
256
+ 128,
257
+ 64,
258
+ 32
259
+ ],
260
+ "matryoshka_weights": [
261
+ 1,
262
+ 1,
263
+ 1,
264
+ 1,
265
+ 1,
266
+ 1,
267
+ 1
268
+ ],
269
+ "n_dims_per_step": -1
270
+ }
271
+ ```
272
+
273
+ ### Training Hyperparameters
274
+ #### Non-Default Hyperparameters
275
+
276
+ - `eval_strategy`: steps
277
+ - `per_device_train_batch_size`: 2048
278
+ - `per_device_eval_batch_size`: 2048
279
+ - `learning_rate`: 0.2
280
+ - `num_train_epochs`: 1
281
+ - `warmup_ratio`: 0.1
282
+ - `bf16`: True
283
+ - `batch_sampler`: no_duplicates
284
+
285
+ #### All Hyperparameters
286
+ <details><summary>Click to expand</summary>
287
+
288
+ - `overwrite_output_dir`: False
289
+ - `do_predict`: False
290
+ - `eval_strategy`: steps
291
+ - `prediction_loss_only`: True
292
+ - `per_device_train_batch_size`: 2048
293
+ - `per_device_eval_batch_size`: 2048
294
+ - `per_gpu_train_batch_size`: None
295
+ - `per_gpu_eval_batch_size`: None
296
+ - `gradient_accumulation_steps`: 1
297
+ - `eval_accumulation_steps`: None
298
+ - `torch_empty_cache_steps`: None
299
+ - `learning_rate`: 0.2
300
+ - `weight_decay`: 0.0
301
+ - `adam_beta1`: 0.9
302
+ - `adam_beta2`: 0.999
303
+ - `adam_epsilon`: 1e-08
304
+ - `max_grad_norm`: 1.0
305
+ - `num_train_epochs`: 1
306
+ - `max_steps`: -1
307
+ - `lr_scheduler_type`: linear
308
+ - `lr_scheduler_kwargs`: {}
309
+ - `warmup_ratio`: 0.1
310
+ - `warmup_steps`: 0
311
+ - `log_level`: passive
312
+ - `log_level_replica`: warning
313
+ - `log_on_each_node`: True
314
+ - `logging_nan_inf_filter`: True
315
+ - `save_safetensors`: True
316
+ - `save_on_each_node`: False
317
+ - `save_only_model`: False
318
+ - `restore_callback_states_from_checkpoint`: False
319
+ - `no_cuda`: False
320
+ - `use_cpu`: False
321
+ - `use_mps_device`: False
322
+ - `seed`: 42
323
+ - `data_seed`: None
324
+ - `jit_mode_eval`: False
325
+ - `use_ipex`: False
326
+ - `bf16`: True
327
+ - `fp16`: False
328
+ - `fp16_opt_level`: O1
329
+ - `half_precision_backend`: auto
330
+ - `bf16_full_eval`: False
331
+ - `fp16_full_eval`: False
332
+ - `tf32`: None
333
+ - `local_rank`: 0
334
+ - `ddp_backend`: None
335
+ - `tpu_num_cores`: None
336
+ - `tpu_metrics_debug`: False
337
+ - `debug`: []
338
+ - `dataloader_drop_last`: False
339
+ - `dataloader_num_workers`: 0
340
+ - `dataloader_prefetch_factor`: None
341
+ - `past_index`: -1
342
+ - `disable_tqdm`: False
343
+ - `remove_unused_columns`: True
344
+ - `label_names`: None
345
+ - `load_best_model_at_end`: False
346
+ - `ignore_data_skip`: False
347
+ - `fsdp`: []
348
+ - `fsdp_min_num_params`: 0
349
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
350
+ - `fsdp_transformer_layer_cls_to_wrap`: None
351
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
352
+ - `deepspeed`: None
353
+ - `label_smoothing_factor`: 0.0
354
+ - `optim`: adamw_torch
355
+ - `optim_args`: None
356
+ - `adafactor`: False
357
+ - `group_by_length`: False
358
+ - `length_column_name`: length
359
+ - `ddp_find_unused_parameters`: None
360
+ - `ddp_bucket_cap_mb`: None
361
+ - `ddp_broadcast_buffers`: False
362
+ - `dataloader_pin_memory`: True
363
+ - `dataloader_persistent_workers`: False
364
+ - `skip_memory_metrics`: True
365
+ - `use_legacy_prediction_loop`: False
366
+ - `push_to_hub`: False
367
+ - `resume_from_checkpoint`: None
368
+ - `hub_model_id`: None
369
+ - `hub_strategy`: every_save
370
+ - `hub_private_repo`: None
371
+ - `hub_always_push`: False
372
+ - `gradient_checkpointing`: False
373
+ - `gradient_checkpointing_kwargs`: None
374
+ - `include_inputs_for_metrics`: False
375
+ - `include_for_metrics`: []
376
+ - `eval_do_concat_batches`: True
377
+ - `fp16_backend`: auto
378
+ - `push_to_hub_model_id`: None
379
+ - `push_to_hub_organization`: None
380
+ - `mp_parameters`:
381
+ - `auto_find_batch_size`: False
382
+ - `full_determinism`: False
383
+ - `torchdynamo`: None
384
+ - `ray_scope`: last
385
+ - `ddp_timeout`: 1800
386
+ - `torch_compile`: False
387
+ - `torch_compile_backend`: None
388
+ - `torch_compile_mode`: None
389
+ - `dispatch_batches`: None
390
+ - `split_batches`: None
391
+ - `include_tokens_per_second`: False
392
+ - `include_num_input_tokens_seen`: False
393
+ - `neftune_noise_alpha`: None
394
+ - `optim_target_modules`: None
395
+ - `batch_eval_metrics`: False
396
+ - `eval_on_start`: False
397
+ - `use_liger_kernel`: False
398
+ - `eval_use_gather_object`: False
399
+ - `average_tokens_across_devices`: False
400
+ - `prompts`: None
401
+ - `batch_sampler`: no_duplicates
402
+ - `multi_dataset_batch_sampler`: proportional
403
+
404
+ </details>
405
+
406
+ ### Training Logs
407
+ | Epoch | Step | Training Loss | Validation Loss |
408
+ |:------:|:----:|:-------------:|:---------------:|
409
+ | 0.0007 | 1 | 48.9183 | - |
410
+ | 0.0682 | 100 | 24.7453 | 3.5934 |
411
+ | 0.1363 | 200 | 8.3975 | 2.4385 |
412
+ | 0.2045 | 300 | 6.3171 | 1.9962 |
413
+ | 0.2727 | 400 | 5.3817 | 1.7536 |
414
+ | 0.3408 | 500 | 4.8295 | 1.6392 |
415
+ | 0.4090 | 600 | 4.4745 | 1.5070 |
416
+ | 0.4772 | 700 | 4.1783 | 1.4406 |
417
+ | 0.5453 | 800 | 3.952 | 1.3655 |
418
+ | 0.6135 | 900 | 3.7352 | 1.3114 |
419
+ | 0.6817 | 1000 | 3.6185 | 1.2551 |
420
+ | 0.7498 | 1100 | 3.4514 | 1.2143 |
421
+ | 0.8180 | 1200 | 3.3535 | 1.1816 |
422
+ | 0.8862 | 1300 | 3.2741 | 1.1527 |
423
+ | 0.9543 | 1400 | 3.1862 | 1.1411 |
424
+
425
+
426
+ ### Framework Versions
427
+ - Python: 3.11.11
428
+ - Sentence Transformers: 3.3.1
429
+ - Transformers: 4.47.1
430
+ - PyTorch: 2.5.1+cu121
431
+ - Accelerate: 1.2.1
432
+ - Datasets: 3.2.0
433
+ - Tokenizers: 0.21.0
434
+
435
+ ## Citation
436
+
437
+ ### BibTeX
438
+
439
+ #### Sentence Transformers
440
+ ```bibtex
441
+ @inproceedings{reimers-2019-sentence-bert,
442
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
443
+ author = "Reimers, Nils and Gurevych, Iryna",
444
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
445
+ month = "11",
446
+ year = "2019",
447
+ publisher = "Association for Computational Linguistics",
448
+ url = "https://arxiv.org/abs/1908.10084",
449
+ }
450
+ ```
451
+
452
+ #### MatryoshkaLoss
453
+ ```bibtex
454
+ @misc{kusupati2024matryoshka,
455
+ title={Matryoshka Representation Learning},
456
+ author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
457
+ year={2024},
458
+ eprint={2205.13147},
459
+ archivePrefix={arXiv},
460
+ primaryClass={cs.LG}
461
+ }
462
+ ```
463
+
464
+ #### MultipleNegativesRankingLoss
465
+ ```bibtex
466
+ @misc{henderson2017efficient,
467
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
468
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
469
+ year={2017},
470
+ eprint={1705.00652},
471
+ archivePrefix={arXiv},
472
+ primaryClass={cs.CL}
473
+ }
474
+ ```
475
+
476
+ <!--
477
+ ## Glossary
478
+
479
+ *Clearly define terms in order to be accessible across audiences.*
480
+ -->
481
+
482
+ <!--
483
+ ## Model Card Authors
484
+
485
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
486
+ -->
487
+
488
+ <!--
489
+ ## Model Card Contact
490
+
491
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
492
+ -->
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.3.1",
4
+ "transformers": "4.47.1",
5
+ "pytorch": "2.5.1+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
modules.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "0_StaticEmbedding",
6
+ "type": "sentence_transformers.models.StaticEmbedding"
7
+ }
8
+ ]