File size: 130,997 Bytes
e848bc9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
---
datasets:
- cfli/bge-full-data
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:1770649
- loss:CachedMultipleNegativesRankingLoss
widget:
- source_sentence: what is the pulse in your wrist called
  sentences:
  - 'Pulse cm up the forearm is suggestive of arteriosclerosis. In coarctation of
    aorta, femoral pulse may be significantly delayed as compared to radial pulse
    (unless there is coexisting aortic regurgitation). The delay can also be observed
    in supravalvar aortic stenosis. Several pulse patterns can be of clinically significance.
    These include: Chinese medicine has focused on the pulse in the upper limbs for
    several centuries. The concept of pulse diagnosis is essentially based on palpation
    and observations of the radial and ulnar volar pulses at the readily accessible
    wrist. Although the pulse can be felt in multiple places in the head, people'
  - Pulse diagnosis into three positions on each wrist. The first pulse closest to
    the wrist is the "cun" (inch, 寸) position, the second "guan" (gate, 關), and the
    third pulse position furthest away from the wrist is the "chi" (foot, 尺). There
    are several systems of diagnostic interpretation of pulse findings utilised in
    the Chinese medicine system. Some systems (Cun Kou) utilise overall pulse qualities,
    looking at changes in the assessed parameters of the pulse to derive one of the
    traditional 28 pulse types. Other approaches focus on individual pulse positions,
    looking at changes in the pulse quality and strength within the
  - 'Pre-hospital trauma assessment inside of the wrist toward the thumb. For unresponsive
    adult patients, checking pulse is performed by palpating the carotid artery in
    the neck. For infants and small children, the pulse is usually assessed in the
    brachial artery in the upper arm. After confirming that the pulse is present,
    the final step in the initial assessment for a trauma patient is to check for
    any gross bleeding and to control it. Should a pulse not be detected, or in the
    case of a child or infant is present but at a rate less than 60, cardiovascular
    resuscitation will be commenced. Steps:'
  - Pulse Pulse In medicine, a pulse represents the tactile arterial palpation of
    the heartbeat by trained fingertips. The pulse may be palpated in any place that
    allows an artery to be compressed near the surface of the body, such as at the
    neck (carotid artery), wrist (radial artery), at the groin (femoral artery), behind
    the knee (popliteal artery), near the ankle joint (posterior tibial artery), and
    on foot (dorsalis pedis artery). Pulse (or the count of arterial pulse per minute)
    is equivalent to measuring the heart rate. The heart rate can also be measured
    by listening to the heart beat by
  - Pulse diagnosis dosha. The middle finger and ring finger are placed next to the
    index finger and represents consequently the Pitta and Kapha doshas of the patient.
    Pulse can be measured in the superficial, middle, and deep levels thus obtaining
    more information regarding energy imbalance of the patient. The main sites for
    pulse assessment are the radial arteries in the left and right wrists, where it
    overlays the styloid process of the radius, between the wrist crease and extending
    proximal, approximately 5 cm in length (or 1.9 cun, where the forearm is 12 cun).
    In traditional Chinese medicine, the pulse is divided
  - 'Pulse auscultation, traditionally using a stethoscope and counting it for a minute.
    The radial pulse is commonly measured using three fingers. This has a reason:
    the finger closest to the heart is used to occlude the pulse pressure, the middle
    finger is used get a crude estimate of the blood pressure, and the finger most
    distal to the heart (usually the ring finger) is used to nullify the effect of
    the ulnar pulse as the two arteries are connected via the palmar arches (superficial
    and deep). The study of the pulse is known as sphygmology. Claudius Galen was
    perhaps the first'
- source_sentence: Diet and Mass Conservation--We weigh as much as we eat?
  sentences:
  - '[This thread](_URL_0_) contains a good comment string based on /u/Redwing999
    experience and some written sources on insect obesity.'
  - We have two chemicals. One that tells us that we're full and the other that tells
    us something gives us pleasure. Through evolution, they made sure that the balance
    wouldn't tip. Now, the latter can override the former. That means you eat cake
    because it gives you pleasure even though you're full as hell. The balance has
    tipped and temptation gets in our way. This is one of the reasons for obesity!
  - This question actually has nothing to do with the law of conservation of mass
    or energy. You don't take up more mass by exercising; in fact, you technically
    **lose** mass because you are sweating water and other substances out, as well
    as converting your food into heat and having this heat escape your body.   It's
    just that when your muscle fibers are damaged through exercise, they "over-heal"
    (to put it very unsophisticated-sounding). The food you eat contributes to feeding
    these growing muscles, which adds more mass to your body. So you *lose* mass through
    exercising, but more than make up for it with a proper diet.
  - A professor of nutrition went on a diet for 10 weeks, consisting largely of twinkies,
    oreos, and doritos. While still maintaining multivitamins and a protein shake
    daily with occasional greens as well to not go completely off the deep end. After
    the 10 weeks of controlling a steady stream of 1,800 calories a day he lost 27
    pounds, lowered his bad cholesterol by 20% and upping his good cholesterol also
    by 20%. Most weight loss is from a steady intake in a caloric deficit (IE don't
    eat 1,700 of your daily 1,800 in one meal). If you do this make sure to also grab
    multivitamins if you don't already have them, and ensure you're getting some protein.
    Obviously these are also just short term results, and it's not recommended you
    over indulge in junk food over a balanced diet and daily exercise. Article link
    here (sorry for ghetto link I'm on my phone) _URL_0_
  - This is a great question. I hope we get some real answers.  I don't chew my food
    much, I'm pretty skinny and eat a ton..I always wondered if chewing less makes
    less nutrients available for absorption
  - There is a tremendous amount of misinformation surrounding calories and weight.
    [This blog entry](_URL_0_) does a good job of presenting why people so often get
    confused with regards to thermodynamics and food. There's a lot to learn, but
    it's a good start.
- source_sentence: Are Jett Pangan and Jon Fratelli both from Scotland?
  sentences:
  - Gary Lightbody Gary Lightbody (born 15 June 1976) is a Northern Irish singer,
    songwriter, guitarist and multi-instrumentalist, best known as the lead singer
    and rhythm guitarist of the Northern Irish-Scottish rock band Snow Patrol.
  - Ray Wilson (musician) Raymond Wilson (born 8 September 1968) is a Scottish musician,
    best known as vocalist in the post-grunge band Stiltskin, and in Genesis from
    1996 to 1998.
  - Peter Frampton Peter Kenneth Frampton (born 22 April 1950) is an English rock
    musician, singer, songwriter, producer, and guitarist. He was previously associated
    with the bands Humble Pie and The Herd. At the end of his 'group' career was Frampton's
    international breakthrough album his live release, "Frampton Comes Alive!" The
    album sold in the United States more than 8 million copies and spawned several
    single hits. Since then he has released several major albums. He has also worked
    with David Bowie and both Matt Cameron and Mike McCready from Pearl Jam, among
    others.
  - Rob Wainwright (rugby union) Robert Iain Wainwright (born 22 March 1965 in Perth,
    Scotland) is a former rugby union footballer who was capped 37 times for Scotland
    (Captain 16 times) and once for the British and Irish Lions. He played flanker.
  - Bert Jansch Herbert "Bert" Jansch (3 November 1943  5 October 2011) was a Scottish
    folk musician and founding member of the band Pentangle. He was born in Glasgow
    and came to prominence in London in the 1960s, as an acoustic guitarist, as well
    as a singer-songwriter. He recorded at least 25 albums and toured extensively
    from the 1960s to the 21st century.
  - Jett Pangan Jett Pangan (born Reginald Pangan on June 21, 1968) is a Filipino
    singer and guitarist best known for fronting the Filipino rock bands The Dawn,
    and the now defunct Jett Pangan Group. He is also an actor, appearing in several
    TV and films, most notably his role in "Tulad ng Dati". He is the half-brother
    of John Lapus.
- source_sentence: How can I control my mind from thinking too much?
  sentences:
  - Why is it that we always think about anything too much which is not even worth
    thinking?
  - When I'm around people I love my mind goes blank. As I get closer to someone it
    gets worse and worse. How can I change my way of thinking?
  - Why am I thinking too much?
  - Why am I thinking too much about everything?
  - If I keep choosing not to fully think about a concept or grab onto it when it
    appears in my mind while I am reading or doing something else, am I damaging my
    brain's ability to understand and act on those things in the future?
  - How do I keep my mind from thinking too much over a thing?
- source_sentence: Who won 23 World Rally Championships, two in particular with the
    Lancia Delta Group A rally car?
  sentences:
  - Lancia Delta Group A The Lancia Delta Group A is a Group A rally car built for
    the Martini Lancia by Lancia to compete in the World Rally Championship. It is
    based upon the Lancia Delta road car and replaced the Lancia Delta S4. The car
    was introduced for the 1987 World Rally Championship season and dominated the
    World Rally Championship, scoring 46 WRC victories overall and winning the constructors'
    championship a record six times in a row from 1987 to 1992, in addition to drivers'
    championship titles for Juha Kankkunen (1987 and 1991) and Miki Biasion (1988
    and 1989), making Lancia the most successful marque in the history of the WRC
    and the Delta the most successful car.
  - Luis Moya Luis Rodríguez Moya, better known as Luis Moya (born 23 September 1960
    in La Coruña, Spain) is a now-retired rally co-driver, synonymous with driver
    Carlos Sainz. He is the third most successful co-driver in the history of the
    World Rally Championship (WRC), after Daniel Elena and Timo Rautiainen
  - 2016 World Rally Championship-3 The 2016 World Rally Championship-3 was the fourth
    season of the World Rally Championship-3, an auto racing championship recognized
    by the Fédération Internationale de l'Automobile, ran in support of the World
    Rally Championship. It was created when the Group R class of rally car was introduced
    in 2013. The Championship was composed of fourteen rallies, and drivers and teams
    had to nominate a maximum of six events. The best five results counted towards
    the championship.
  - 2015 Rally Catalunya The 2015 Rally Catalunya (formally the 51º Rally RACC Catalunya
     Costa Daurada) was the twelfth round of the 2015 World Rally Championship. The
    race was held over four days between 22 October and 25 October 2015, and operated
    out of Salou, Catalonia, Spain. Volkswagen's Andreas Mikkelsen won the race, his
    first win in the World Rally Championship.
  - 'Lancia Rally 037 The Lancia Rally ("Tipo 151", also known as the Lancia Rally
    037, Lancia 037 or Lancia-Abarth #037 from its Abarth project code "037") was
    a mid-engine sports car and rally car built by Lancia in the early 1980s to compete
    in the FIA Group B World Rally Championship. Driven by Markku Alén, Attilio Bettega,
    and Walter Röhrl, the car won Lancia the manufacturers'' world championship in
    the 1983 season. It was the last rear-wheel drive car to win the WRC.'
  - John Lund (racing driver) John Lund (born 12 January 1954) is a BriSCA Formula
    1 Stock Cars racing driver from Rimington, Lancashire who races under number 53.
    Lund is one of the most successful stock car drivers of all time and holds the
    current record for the most World Championship wins.
model-index:
- name: SentenceTransformer
  results:
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: NanoClimateFEVER
      type: NanoClimateFEVER
    metrics:
    - type: cosine_accuracy@1
      value: 0.22
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.52
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.6
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.64
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.22
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.20666666666666667
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.14400000000000002
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.084
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.08833333333333332
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.26666666666666666
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.30833333333333335
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.35666666666666663
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.2839842522559327
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.37471428571428567
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.2232144898031751
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: NanoDBPedia
      type: NanoDBPedia
    metrics:
    - type: cosine_accuracy@1
      value: 0.7
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.74
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.8
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.86
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.7
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.48
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.43200000000000005
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.3760000000000001
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.07263002775640012
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.11337585016033845
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.15857516982468162
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.23454122344078535
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.4732884231947513
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.738888888888889
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.334802367685341
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: NanoFEVER
      type: NanoFEVER
    metrics:
    - type: cosine_accuracy@1
      value: 0.88
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.96
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 1.0
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 1.0
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.88
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.33333333333333326
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.20799999999999996
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.10799999999999998
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.8266666666666667
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.9233333333333333
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.9533333333333333
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.9733333333333333
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.920250305861268
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.9266666666666665
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.8908062417949636
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: NanoFiQA2018
      type: NanoFiQA2018
    metrics:
    - type: cosine_accuracy@1
      value: 0.46
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.62
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.68
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.74
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.46
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.2866666666666667
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.22399999999999995
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.13399999999999998
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.24452380952380953
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.4037936507936508
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.4890396825396825
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.5964206349206349
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.49008883369308526
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.5513333333333333
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.4201188803513742
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: NanoHotpotQA
      type: NanoHotpotQA
    metrics:
    - type: cosine_accuracy@1
      value: 0.82
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.94
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.94
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.96
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.82
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.38666666666666655
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.24799999999999997
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.132
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.41
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.58
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.62
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.66
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.6699619900438456
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.8795238095238095
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.5983592359151276
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: NanoMSMARCO
      type: NanoMSMARCO
    metrics:
    - type: cosine_accuracy@1
      value: 0.34
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.6
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.72
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.82
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.34
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.2
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.14400000000000002
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.08199999999999999
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.34
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.6
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.72
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.82
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.5747097116234108
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.4967380952380951
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.5049567742199321
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: NanoNFCorpus
      type: NanoNFCorpus
    metrics:
    - type: cosine_accuracy@1
      value: 0.36
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.5
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.56
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.62
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.36
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.2933333333333333
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.296
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.22
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.015576651798182985
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.03488791186499473
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.06408574388859087
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.07971201227506045
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.25470834876894616
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.4443888888888889
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.09234660597563751
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: NanoNQ
      type: NanoNQ
    metrics:
    - type: cosine_accuracy@1
      value: 0.46
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.66
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.7
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.78
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.46
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.22
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.14400000000000002
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.08399999999999999
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.45
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.61
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.66
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.75
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.6060972125930784
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.569079365079365
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.5645161933196003
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: NanoQuoraRetrieval
      type: NanoQuoraRetrieval
    metrics:
    - type: cosine_accuracy@1
      value: 0.94
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.98
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.98
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 1.0
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.94
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.40666666666666657
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.25199999999999995
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.13599999999999998
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.8173333333333332
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.9453333333333334
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.956
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.9933333333333334
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.9593808852823181
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.9625
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.9422896825396825
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: NanoSCIDOCS
      type: NanoSCIDOCS
    metrics:
    - type: cosine_accuracy@1
      value: 0.48
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.66
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.74
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.86
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.48
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.33333333333333326
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.276
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.20199999999999996
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.10166666666666668
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.20666666666666664
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.2846666666666667
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.41566666666666663
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.3972031938693105
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.5927698412698412
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.304253910983743
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: NanoArguAna
      type: NanoArguAna
    metrics:
    - type: cosine_accuracy@1
      value: 0.26
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.64
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.8
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.9
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.26
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.21333333333333335
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.16
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.08999999999999998
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.26
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.64
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.8
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.9
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.5855962294470597
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.48385714285714276
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.48932444805879344
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: NanoSciFact
      type: NanoSciFact
    metrics:
    - type: cosine_accuracy@1
      value: 0.34
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.48
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.54
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.6
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.34
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.18
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.128
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.07
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.305
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.47
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.54
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.6
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.45719389021878065
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.4177460317460317
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.41560718364765603
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: NanoTouche2020
      type: NanoTouche2020
    metrics:
    - type: cosine_accuracy@1
      value: 0.4897959183673469
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.8367346938775511
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.8979591836734694
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.9795918367346939
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.4897959183673469
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.5034013605442177
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.4653061224489797
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.36122448979591837
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.03552902483256089
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.10751588484963115
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.16516486949441941
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.24301991055992778
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.4179864214131331
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.6742306446388079
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.30799309847167516
      name: Cosine Map@100
  - task:
      type: nano-beir
      name: Nano BEIR
    dataset:
      name: NanoBEIR mean
      type: NanoBEIR_mean
    metrics:
    - type: cosine_accuracy@1
      value: 0.519215070643642
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.7028257456828885
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.7659968602825747
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.8276609105180532
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.519215070643642
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.31103087388801676
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.2401004709576139
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.1599403453689168
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.30517380876238104
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.4539671767437396
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.5168614460831313
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.5863610600920313
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.5454192075588399
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.6240336149111658
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.4683530086743616
      name: Cosine Map@100
---

# SentenceTransformer

This is a [sentence-transformers](https://www.SBERT.net) model trained on the [bge-full-data](https://huggingface.co/datasets/cfli/bge-full-data) dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
<!-- - **Base model:** [Unknown](https://huggingface.co/unknown) -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 dimensions
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
    - [bge-full-data](https://huggingface.co/datasets/cfli/bge-full-data)
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: ModernBertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("NohTow/ModernBERT-base-DPR-fullneg-gte-0.0002")
# Run inference
sentences = [
    'Who won 23 World Rally Championships, two in particular with the Lancia Delta Group A rally car?',
    "Lancia Delta Group A The Lancia Delta Group A is a Group A rally car built for the Martini Lancia by Lancia to compete in the World Rally Championship. It is based upon the Lancia Delta road car and replaced the Lancia Delta S4. The car was introduced for the 1987 World Rally Championship season and dominated the World Rally Championship, scoring 46 WRC victories overall and winning the constructors' championship a record six times in a row from 1987 to 1992, in addition to drivers' championship titles for Juha Kankkunen (1987 and 1991) and Miki Biasion (1988 and 1989), making Lancia the most successful marque in the history of the WRC and the Delta the most successful car.",
    'Luis Moya Luis Rodríguez Moya, better known as Luis Moya (born 23 September 1960 in La Coruña, Spain) is a now-retired rally co-driver, synonymous with driver Carlos Sainz. He is the third most successful co-driver in the history of the World Rally Championship (WRC), after Daniel Elena and Timo Rautiainen',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Information Retrieval

* Datasets: `NanoClimateFEVER`, `NanoDBPedia`, `NanoFEVER`, `NanoFiQA2018`, `NanoHotpotQA`, `NanoMSMARCO`, `NanoNFCorpus`, `NanoNQ`, `NanoQuoraRetrieval`, `NanoSCIDOCS`, `NanoArguAna`, `NanoSciFact` and `NanoTouche2020`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | NanoClimateFEVER | NanoDBPedia | NanoFEVER  | NanoFiQA2018 | NanoHotpotQA | NanoMSMARCO | NanoNFCorpus | NanoNQ     | NanoQuoraRetrieval | NanoSCIDOCS | NanoArguAna | NanoSciFact | NanoTouche2020 |
|:--------------------|:-----------------|:------------|:-----------|:-------------|:-------------|:------------|:-------------|:-----------|:-------------------|:------------|:------------|:------------|:---------------|
| cosine_accuracy@1   | 0.22             | 0.7         | 0.88       | 0.46         | 0.82         | 0.34        | 0.36         | 0.46       | 0.94               | 0.48        | 0.26        | 0.34        | 0.4898         |
| cosine_accuracy@3   | 0.52             | 0.74        | 0.96       | 0.62         | 0.94         | 0.6         | 0.5          | 0.66       | 0.98               | 0.66        | 0.64        | 0.48        | 0.8367         |
| cosine_accuracy@5   | 0.6              | 0.8         | 1.0        | 0.68         | 0.94         | 0.72        | 0.56         | 0.7        | 0.98               | 0.74        | 0.8         | 0.54        | 0.898          |
| cosine_accuracy@10  | 0.64             | 0.86        | 1.0        | 0.74         | 0.96         | 0.82        | 0.62         | 0.78       | 1.0                | 0.86        | 0.9         | 0.6         | 0.9796         |
| cosine_precision@1  | 0.22             | 0.7         | 0.88       | 0.46         | 0.82         | 0.34        | 0.36         | 0.46       | 0.94               | 0.48        | 0.26        | 0.34        | 0.4898         |
| cosine_precision@3  | 0.2067           | 0.48        | 0.3333     | 0.2867       | 0.3867       | 0.2         | 0.2933       | 0.22       | 0.4067             | 0.3333      | 0.2133      | 0.18        | 0.5034         |
| cosine_precision@5  | 0.144            | 0.432       | 0.208      | 0.224        | 0.248        | 0.144       | 0.296        | 0.144      | 0.252              | 0.276       | 0.16        | 0.128       | 0.4653         |
| cosine_precision@10 | 0.084            | 0.376       | 0.108      | 0.134        | 0.132        | 0.082       | 0.22         | 0.084      | 0.136              | 0.202       | 0.09        | 0.07        | 0.3612         |
| cosine_recall@1     | 0.0883           | 0.0726      | 0.8267     | 0.2445       | 0.41         | 0.34        | 0.0156       | 0.45       | 0.8173             | 0.1017      | 0.26        | 0.305       | 0.0355         |
| cosine_recall@3     | 0.2667           | 0.1134      | 0.9233     | 0.4038       | 0.58         | 0.6         | 0.0349       | 0.61       | 0.9453             | 0.2067      | 0.64        | 0.47        | 0.1075         |
| cosine_recall@5     | 0.3083           | 0.1586      | 0.9533     | 0.489        | 0.62         | 0.72        | 0.0641       | 0.66       | 0.956              | 0.2847      | 0.8         | 0.54        | 0.1652         |
| cosine_recall@10    | 0.3567           | 0.2345      | 0.9733     | 0.5964       | 0.66         | 0.82        | 0.0797       | 0.75       | 0.9933             | 0.4157      | 0.9         | 0.6         | 0.243          |
| **cosine_ndcg@10**  | **0.284**        | **0.4733**  | **0.9203** | **0.4901**   | **0.67**     | **0.5747**  | **0.2547**   | **0.6061** | **0.9594**         | **0.3972**  | **0.5856**  | **0.4572**  | **0.418**      |
| cosine_mrr@10       | 0.3747           | 0.7389      | 0.9267     | 0.5513       | 0.8795       | 0.4967      | 0.4444       | 0.5691     | 0.9625             | 0.5928      | 0.4839      | 0.4177      | 0.6742         |
| cosine_map@100      | 0.2232           | 0.3348      | 0.8908     | 0.4201       | 0.5984       | 0.505       | 0.0923       | 0.5645     | 0.9423             | 0.3043      | 0.4893      | 0.4156      | 0.308          |

#### Nano BEIR

* Dataset: `NanoBEIR_mean`
* Evaluated with [<code>NanoBEIREvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.NanoBEIREvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.5192     |
| cosine_accuracy@3   | 0.7028     |
| cosine_accuracy@5   | 0.766      |
| cosine_accuracy@10  | 0.8277     |
| cosine_precision@1  | 0.5192     |
| cosine_precision@3  | 0.311      |
| cosine_precision@5  | 0.2401     |
| cosine_precision@10 | 0.1599     |
| cosine_recall@1     | 0.3052     |
| cosine_recall@3     | 0.454      |
| cosine_recall@5     | 0.5169     |
| cosine_recall@10    | 0.5864     |
| **cosine_ndcg@10**  | **0.5454** |
| cosine_mrr@10       | 0.624      |
| cosine_map@100      | 0.4684     |

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### bge-full-data

* Dataset: [bge-full-data](https://huggingface.co/datasets/cfli/bge-full-data) at [78f5c99](https://huggingface.co/datasets/cfli/bge-full-data/tree/78f5c99b534a52824ab26bd24edda592eaed4c7a)
* Size: 1,770,649 training samples
* Columns: <code>anchor</code>, <code>positive</code>, <code>negative_0</code>, <code>negative_1</code>, <code>negative_2</code>, <code>negative_3</code>, and <code>negative_4</code>
* Approximate statistics based on the first 1000 samples:
  |         | anchor                                                                             | positive                                                                            | negative_0                                                                          | negative_1                                                                          | negative_2                                                                          | negative_3                                                                          | negative_4                                                                          |
  |:--------|:-----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
  | type    | string                                                                             | string                                                                              | string                                                                              | string                                                                              | string                                                                              | string                                                                              | string                                                                              |
  | details | <ul><li>min: 4 tokens</li><li>mean: 20.15 tokens</li><li>max: 512 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 173.18 tokens</li><li>max: 512 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 170.06 tokens</li><li>max: 512 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 167.88 tokens</li><li>max: 512 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 167.95 tokens</li><li>max: 512 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 166.32 tokens</li><li>max: 512 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 167.63 tokens</li><li>max: 512 tokens</li></ul> |
* Samples:
  | anchor                                                     | positive                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | negative_0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | negative_1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | negative_2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | negative_3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | negative_4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
  |:-----------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>What happens if you eat raw chicken?</code>          | <code>What are the dangers of eating raw chicken?</code>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <code>Does all raw chicken have salmonella?</code>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <code>How safe is to eat chicken during pregnancy?</code>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <code>What meats are safe to eat raw?</code>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <code>What are some natural obligations of chicken?</code>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <code>Is it safe to eat raw egg?</code>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
  | <code>how long does it take for a wren egg to hatch</code> | <code>How often does a mother Wren sit on her nest? I don't know for sure about how long Wrens usually spend on the nest at one sitting.. (Sorry couldn't resist the joke) However, the eggs usually hatch in 13-18 days, so if there were no hatchlings when that time elapsed, then you'd know for sure that she hadn't been behaving normally.</code>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <code>- When you are trying to hatch Tennessee red quail eggs, it will take  approximately 23 days. You should perform lock down on the egg at  20 days. This is a period of time whe … n there should be no  disturbances because hatching is likely to begin.urkey eggs usually take 21 to 28 days to hatch depending on what they are incubated in like an incubator or by a hen.</code>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <code>How long does it take an egg to hatch? For an average Eagle it would have a time for about 32-36 days, but the average time for an Eagle egg to hatch is about 35 days. 28 people found this useful.</code>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <code>- When you are trying to hatch Tennessee red quail eggs, it will take  approximately 23 days. You should perform lock down on the egg at  20 days. This is a period of time whe … n there should be no  disturbances because hatching is likely to begin.urkey eggs usually take 21 to 28 days to hatch depending on what they are incubated in like an incubator or by a hen. It also depends on how fertile it is and how it is cared … for.</code>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <code>- Actually this may vary depending on the kind of bird finch, the eggs hatch in between 12 - 16 days or 3 weeks.The nestlings fledge in 18 - 19 days.ctually this may vary depending on the kind of bird finch, the eggs hatch in between 12 - 16 days or 3 weeks.</code>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <code>- Welcome, and thanks for visiting the virtual home of the Whitestown Fire Department. Whether you’re stopping by to obtain information on our department, place a comment, track our progress and events, or just looking at the great pictures of our top notch personnel in action, we hope that you find what you’re after. Please feel free to provide feedback or contact us for any questions you may have.</code>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
  | <code>can you have schizophrenia and bipolar</code>        | <code>Can you have both bipolar disorder and schizophrenia? Health Mental Health Can you have both bipolar disorder and schizophrenia? I'm 19 and was diagnosed with Bipolar Disorder almost 2 years ago. I also have some symptoms of schizophrenia such as auditory hallucinations and occasional visual ones as well and occasional paranoia. Ok the paranoia is pretty frequent. So yea, Can you have both of them? I know some of the symptoms can be... show more Follow 6 answers Answers Relevance Rating Newest Oldest Best Answer: yes you can, but some people with bipolar disorder have hallucinations and delusions from the bipolar disorder. only a psychiatrist could diagnose you i guess. Source (s):er nurse Zach · 9 years ago0 0 Comment Asker's rating Yes, one can have both bipolar disorder and schizophrenia, as the cause is one and the same - a spirit (ghost). Not only are the mood swings imparted by the associated spirit, but the alleged hallucinations are as well. The voices that those diagnosed as h...</code> | <code>Dual Diagnosis: Understanding Sex Addiction With Bipolar Disorder Dual Diagnosis: Understanding Sex Addiction With Bipolar Disorder February 5, 2015 Dual Diagnosis Bipolar disorder manifests itself in one college student’s “need” to sexually expose himself on campus. Marty was diagnosed with bipolar 1 disorder in the spring of his junior year in college. The symptoms had emerged during adolescence, but it wasn’t until a particularly startling manic episode that Marty’s doctor knew his depression was more than unipolar (i.e., clinical depression by itself). The gifted art student had painted his naked body in elaborate geometric patterns and shown up at the fountain in front of his university’s grand administrative building during the middle of a sunny afternoon. He proceeded to dramatically quote Michel Foucault’s Madness and Civilization, even as he was carried away by campus security. The combination of SSRIs and mood stabilizers prescribed to Marty for the treatment of bipolar disor...</code> | <code>Understanding Schizoaffective Disorder Medication Understanding Schizoaffective Disorder Medication Because schizoaffective disorder has symptoms of both psychosis and a mood disorder, ✱ doctors often prescribe different medicines to treat different symptoms of the condition. For example, they may prescribe: An antipsychotic, which helps symptoms like delusions and hallucinations A mood-stabilizing medicine, which can help level out “highs” and “lows”An antidepressant, which can help feelings of sadness, hopelessness, and difficulty with sleep and concentration One medicine for schizoaffective disorder's symptoms INVEGA SUSTENNA ® treats the symptoms of schizoaffective disorder (psychosis and mood), so it may be possible for you to manage symptoms with one medicine if your doctor feels it’s right for you. And that means one less pill to think about every day. Approved for the treatment of schizophrenia and schizoaffective disorder.✱ Please discuss your symptoms with your healthcare pro...</code> | <code>Paranoia and schizophrenia: What you need to know Newsletter MNT - Hourly Medical News Since 2003Search Log in Newsletter MNT - Hourly Medical News Since 2003Search Login Paranoia and schizophrenia: What you need to know Last updated Thu 25 May 2017By Yvette Brazier Reviewed by Timothy J. Legg, Ph D, CRNPOverview Symptoms Causes Diagnosis Treatment Complications A person who has a condition on the schizophrenia spectrum may experience delusions and what is commonly known as paranoia. These delusions may give rise to fears that others are plotting against the individual. Everyone can have a paranoid thought from time to time. On a rough day, we may find ourselves saying "Oh boy, the whole world is out to get me!" But we recognize that this is not the case. People with paranoia often have an extensive network of paranoid thoughts and ideas. This can result in a disproportionate amount of time spent thinking up ways for the individual to protect themselves from their perceived persecutors...</code> | <code>Same Genes Suspected in Both Depression and Bipolar Illness Same Genes Suspected in Both Depression and Bipolar Illness Increased Risk May Stem From Variation in Gene On/Off Switch January 28, 2010 • Science Update Protein produced by PBRM1 gene Researchers, for the first time, have pinpointed a genetic hotspot that confers risk for both bipolar disorder and depression. People with either of these mood disorders were significantly more likely to have risk versions of genes at this site than healthy controls. One of the genes, which codes for part of a cell's machinery that tells genes when to turn on and off, was also found to be over-expressed in the executive hub of bipolar patients' brains, making it a prime suspect. The results add to mounting evidence that major mental disorders overlap at the molecular level. "People who carry the risk versions may differ in some dimension of brain development that may increase risk for mood disorders later in life," explained Francis Mc Mahon, M...</code> | <code>Schizophrenia Definition and Characteristics Schizophrenia Schizophrenia Definition and Characteristics Symptoms, Treatments and Risk Factors By Marcia Purse | Reviewed by Steven Gans, MDUpdated July 06, 2017Share Pin Email Print Kent Mathews/Stone/Getty Images Schizophrenia is a severe, lifelong mental disorder characterized by delusions, hallucinations, incoherence and physical agitation. It is classified as a thought disorder, while bipolar disorder is a mood disorder. Incidence and Risk Factors for Schizophrenia It is estimated that 1% of the world's population has schizophrenia. While there is evidence that genetic factors have a role in developing schizophrenia, environment may play a significant part as well. The Difference Between Bipolar Disorder and Schizophrenia While bipolar I disorder may include psychotic features similar to those found in schizophrenia during manic or depressive episodes, and bipolar II disorder during depressive episodes, schizophrenia does not include ...</code> |
* Loss: [<code>CachedMultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedmultiplenegativesrankingloss) with these parameters:
  ```json
  {
      "scale": 20.0,
      "similarity_fct": "cos_sim"
  }
  ```

### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: steps
- `per_device_train_batch_size`: 2048
- `per_device_eval_batch_size`: 2048
- `learning_rate`: 0.0002
- `num_train_epochs`: 2
- `warmup_ratio`: 0.05
- `bf16`: True
- `batch_sampler`: no_duplicates

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 2048
- `per_device_eval_batch_size`: 2048
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 0.0002
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 2
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.05
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: True
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 5
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: True
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: None
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional

</details>

### Training Logs
<details><summary>Click to expand</summary>

| Epoch  | Step | Training Loss | NanoClimateFEVER_cosine_ndcg@10 | NanoDBPedia_cosine_ndcg@10 | NanoFEVER_cosine_ndcg@10 | NanoFiQA2018_cosine_ndcg@10 | NanoHotpotQA_cosine_ndcg@10 | NanoMSMARCO_cosine_ndcg@10 | NanoNFCorpus_cosine_ndcg@10 | NanoNQ_cosine_ndcg@10 | NanoQuoraRetrieval_cosine_ndcg@10 | NanoSCIDOCS_cosine_ndcg@10 | NanoArguAna_cosine_ndcg@10 | NanoSciFact_cosine_ndcg@10 | NanoTouche2020_cosine_ndcg@10 | NanoBEIR_mean_cosine_ndcg@10 |
|:------:|:----:|:-------------:|:-------------------------------:|:--------------------------:|:------------------------:|:---------------------------:|:---------------------------:|:--------------------------:|:---------------------------:|:---------------------:|:---------------------------------:|:--------------------------:|:--------------------------:|:--------------------------:|:-----------------------------:|:----------------------------:|
| 0.0185 | 2    | 8.9197        | -                               | -                          | -                        | -                           | -                           | -                          | -                           | -                     | -                                 | -                          | -                          | -                          | -                             | -                            |
| 0.0370 | 4    | 8.4814        | -                               | -                          | -                        | -                           | -                           | -                          | -                           | -                     | -                                 | -                          | -                          | -                          | -                             | -                            |
| 0.0556 | 6    | 6.6919        | -                               | -                          | -                        | -                           | -                           | -                          | -                           | -                     | -                                 | -                          | -                          | -                          | -                             | -                            |
| 0.0741 | 8    | 5.2493        | -                               | -                          | -                        | -                           | -                           | -                          | -                           | -                     | -                                 | -                          | -                          | -                          | -                             | -                            |
| 0.0926 | 10   | 4.2792        | -                               | -                          | -                        | -                           | -                           | -                          | -                           | -                     | -                                 | -                          | -                          | -                          | -                             | -                            |
| 0.1111 | 12   | 3.4554        | 0.2385                          | 0.3867                     | 0.7209                   | 0.3194                      | 0.5207                      | 0.4438                     | 0.1702                      | 0.3732                | 0.8791                            | 0.2758                     | 0.4377                     | 0.4026                     | 0.4623                        | 0.4331                       |
| 0.1296 | 14   | 3.0437        | -                               | -                          | -                        | -                           | -                           | -                          | -                           | -                     | -                                 | -                          | -                          | -                          | -                             | -                            |
| 0.1481 | 16   | 2.6133        | -                               | -                          | -                        | -                           | -                           | -                          | -                           | -                     | -                                 | -                          | -                          | -                          | -                             | -                            |
| 0.1667 | 18   | 2.3395        | -                               | -                          | -                        | -                           | -                           | -                          | -                           | -                     | -                                 | -                          | -                          | -                          | -                             | -                            |
| 0.1852 | 20   | 2.1826        | -                               | -                          | -                        | -                           | -                           | -                          | -                           | -                     | -                                 | -                          | -                          | -                          | -                             | -                            |
| 0.2037 | 22   | 2.0498        | -                               | -                          | -                        | -                           | -                           | -                          | -                           | -                     | -                                 | -                          | -                          | -                          | -                             | -                            |
| 0.2222 | 24   | 1.9743        | 0.2706                          | 0.4493                     | 0.8104                   | 0.4201                      | 0.6036                      | 0.5542                     | 0.2249                      | 0.5859                | 0.9221                            | 0.3091                     | 0.5671                     | 0.5562                     | 0.4864                        | 0.5200                       |
| 0.2407 | 26   | 1.9111        | -                               | -                          | -                        | -                           | -                           | -                          | -                           | -                     | -                                 | -                          | -                          | -                          | -                             | -                            |
| 0.2593 | 28   | 1.8534        | -                               | -                          | -                        | -                           | -                           | -                          | -                           | -                     | -                                 | -                          | -                          | -                          | -                             | -                            |
| 0.2778 | 30   | 1.8137        | -                               | -                          | -                        | -                           | -                           | -                          | -                           | -                     | -                                 | -                          | -                          | -                          | -                             | -                            |
| 0.2963 | 32   | 1.7587        | -                               | -                          | -                        | -                           | -                           | -                          | -                           | -                     | -                                 | -                          | -                          | -                          | -                             | -                            |
| 0.3148 | 34   | 1.7124        | -                               | -                          | -                        | -                           | -                           | -                          | -                           | -                     | -                                 | -                          | -                          | -                          | -                             | -                            |
| 0.3333 | 36   | 1.6841        | 0.2945                          | 0.4652                     | 0.8333                   | 0.4352                      | 0.6189                      | 0.5619                     | 0.2512                      | 0.5977                | 0.9403                            | 0.3322                     | 0.5502                     | 0.5778                     | 0.4596                        | 0.5321                       |
| 0.3519 | 38   | 1.6765        | -                               | -                          | -                        | -                           | -                           | -                          | -                           | -                     | -                                 | -                          | -                          | -                          | -                             | -                            |
| 0.3704 | 40   | 1.6314        | -                               | -                          | -                        | -                           | -                           | -                          | -                           | -                     | -                                 | -                          | -                          | -                          | -                             | -                            |
| 0.3889 | 42   | 1.5989        | -                               | -                          | -                        | -                           | -                           | -                          | -                           | -                     | -                                 | -                          | -                          | -                          | -                             | -                            |
| 0.4074 | 44   | 1.592         | -                               | -                          | -                        | -                           | -                           | -                          | -                           | -                     | -                                 | -                          | -                          | -                          | -                             | -                            |
| 0.4259 | 46   | 1.572         | -                               | -                          | -                        | -                           | -                           | -                          | -                           | -                     | -                                 | -                          | -                          | -                          | -                             | -                            |
| 0.4444 | 48   | 1.5525        | 0.3045                          | 0.4626                     | 0.8526                   | 0.4507                      | 0.6275                      | 0.5617                     | 0.2575                      | 0.5676                | 0.9406                            | 0.3661                     | 0.5666                     | 0.5693                     | 0.4231                        | 0.5346                       |
| 0.4630 | 50   | 1.51          | -                               | -                          | -                        | -                           | -                           | -                          | -                           | -                     | -                                 | -                          | -                          | -                          | -                             | -                            |
| 0.4815 | 52   | 1.5156        | -                               | -                          | -                        | -                           | -                           | -                          | -                           | -                     | -                                 | -                          | -                          | -                          | -                             | -                            |
| 0.5    | 54   | 1.5076        | -                               | -                          | -                        | -                           | -                           | -                          | -                           | -                     | -                                 | -                          | -                          | -                          | -                             | -                            |
| 0.5185 | 56   | 1.4781        | -                               | -                          | -                        | -                           | -                           | -                          | -                           | -                     | -                                 | -                          | -                          | -                          | -                             | -                            |
| 0.5370 | 58   | 1.4833        | -                               | -                          | -                        | -                           | -                           | -                          | -                           | -                     | -                                 | -                          | -                          | -                          | -                             | -                            |
| 0.5556 | 60   | 1.4576        | 0.3042                          | 0.4727                     | 0.8456                   | 0.4578                      | 0.6338                      | 0.5599                     | 0.2513                      | 0.5883                | 0.9370                            | 0.3792                     | 0.5656                     | 0.5229                     | 0.4431                        | 0.5355                       |
| 0.5741 | 62   | 1.4402        | -                               | -                          | -                        | -                           | -                           | -                          | -                           | -                     | -                                 | -                          | -                          | -                          | -                             | -                            |
| 0.5926 | 64   | 1.438         | -                               | -                          | -                        | -                           | -                           | -                          | -                           | -                     | -                                 | -                          | -                          | -                          | -                             | -                            |
| 0.6111 | 66   | 1.4504        | -                               | -                          | -                        | -                           | -                           | -                          | -                           | -                     | -                                 | -                          | -                          | -                          | -                             | -                            |
| 0.6296 | 68   | 1.4142        | -                               | -                          | -                        | -                           | -                           | -                          | -                           | -                     | -                                 | -                          | -                          | -                          | -                             | -                            |
| 0.6481 | 70   | 1.4141        | -                               | -                          | -                        | -                           | -                           | -                          | -                           | -                     | -                                 | -                          | -                          | -                          | -                             | -                            |
| 0.6667 | 72   | 1.3917        | 0.3225                          | 0.4697                     | 0.8632                   | 0.4529                      | 0.6474                      | 0.5575                     | 0.2341                      | 0.5942                | 0.9464                            | 0.3846                     | 0.5467                     | 0.4924                     | 0.4124                        | 0.5326                       |
| 0.6852 | 74   | 1.4108        | -                               | -                          | -                        | -                           | -                           | -                          | -                           | -                     | -                                 | -                          | -                          | -                          | -                             | -                            |
| 0.7037 | 76   | 1.4           | -                               | -                          | -                        | -                           | -                           | -                          | -                           | -                     | -                                 | -                          | -                          | -                          | -                             | -                            |
| 0.7222 | 78   | 1.385         | -                               | -                          | -                        | -                           | -                           | -                          | -                           | -                     | -                                 | -                          | -                          | -                          | -                             | -                            |
| 0.7407 | 80   | 1.3946        | -                               | -                          | -                        | -                           | -                           | -                          | -                           | -                     | -                                 | -                          | -                          | -                          | -                             | -                            |
| 0.7593 | 82   | 1.3762        | -                               | -                          | -                        | -                           | -                           | -                          | -                           | -                     | -                                 | -                          | -                          | -                          | -                             | -                            |
| 0.7778 | 84   | 1.3606        | 0.3325                          | 0.4747                     | 0.8730                   | 0.4891                      | 0.6511                      | 0.5941                     | 0.2530                      | 0.5835                | 0.9452                            | 0.3776                     | 0.5490                     | 0.4680                     | 0.4447                        | 0.5412                       |
| 0.7963 | 86   | 1.3615        | -                               | -                          | -                        | -                           | -                           | -                          | -                           | -                     | -                                 | -                          | -                          | -                          | -                             | -                            |
| 0.8148 | 88   | 1.3811        | -                               | -                          | -                        | -                           | -                           | -                          | -                           | -                     | -                                 | -                          | -                          | -                          | -                             | -                            |
| 0.8333 | 90   | 1.3462        | -                               | -                          | -                        | -                           | -                           | -                          | -                           | -                     | -                                 | -                          | -                          | -                          | -                             | -                            |
| 0.8519 | 92   | 1.3617        | -                               | -                          | -                        | -                           | -                           | -                          | -                           | -                     | -                                 | -                          | -                          | -                          | -                             | -                            |
| 0.8704 | 94   | 1.3345        | -                               | -                          | -                        | -                           | -                           | -                          | -                           | -                     | -                                 | -                          | -                          | -                          | -                             | -                            |
| 0.8889 | 96   | 1.3291        | 0.3249                          | 0.4780                     | 0.8791                   | 0.4925                      | 0.6518                      | 0.6018                     | 0.2678                      | 0.5981                | 0.9451                            | 0.3799                     | 0.5474                     | 0.4423                     | 0.4340                        | 0.5418                       |
| 0.9074 | 98   | 1.3253        | -                               | -                          | -                        | -                           | -                           | -                          | -                           | -                     | -                                 | -                          | -                          | -                          | -                             | -                            |
| 0.9259 | 100  | 1.3375        | -                               | -                          | -                        | -                           | -                           | -                          | -                           | -                     | -                                 | -                          | -                          | -                          | -                             | -                            |
| 0.9444 | 102  | 1.3177        | -                               | -                          | -                        | -                           | -                           | -                          | -                           | -                     | -                                 | -                          | -                          | -                          | -                             | -                            |
| 0.9630 | 104  | 1.3318        | -                               | -                          | -                        | -                           | -                           | -                          | -                           | -                     | -                                 | -                          | -                          | -                          | -                             | -                            |
| 0.9815 | 106  | 1.297         | -                               | -                          | -                        | -                           | -                           | -                          | -                           | -                     | -                                 | -                          | -                          | -                          | -                             | -                            |
| 1.0093 | 108  | 1.3128        | 0.3211                          | 0.4761                     | 0.8869                   | 0.4904                      | 0.6531                      | 0.5906                     | 0.2660                      | 0.6035                | 0.9473                            | 0.3810                     | 0.5749                     | 0.4420                     | 0.4286                        | 0.5432                       |
| 1.0278 | 110  | 1.3088        | -                               | -                          | -                        | -                           | -                           | -                          | -                           | -                     | -                                 | -                          | -                          | -                          | -                             | -                            |
| 1.0463 | 112  | 1.3071        | -                               | -                          | -                        | -                           | -                           | -                          | -                           | -                     | -                                 | -                          | -                          | -                          | -                             | -                            |
| 1.0648 | 114  | 1.2936        | -                               | -                          | -                        | -                           | -                           | -                          | -                           | -                     | -                                 | -                          | -                          | -                          | -                             | -                            |
| 1.0833 | 116  | 1.2839        | -                               | -                          | -                        | -                           | -                           | -                          | -                           | -                     | -                                 | -                          | -                          | -                          | -                             | -                            |
| 1.1019 | 118  | 1.2693        | -                               | -                          | -                        | -                           | -                           | -                          | -                           | -                     | -                                 | -                          | -                          | -                          | -                             | -                            |
| 1.1204 | 120  | 1.291         | 0.3022                          | 0.4793                     | 0.8822                   | 0.5117                      | 0.6691                      | 0.5708                     | 0.2637                      | 0.6140                | 0.9521                            | 0.3913                     | 0.5773                     | 0.4487                     | 0.4281                        | 0.5454                       |
| 1.1389 | 122  | 1.2636        | -                               | -                          | -                        | -                           | -                           | -                          | -                           | -                     | -                                 | -                          | -                          | -                          | -                             | -                            |
| 1.1574 | 124  | 1.2427        | -                               | -                          | -                        | -                           | -                           | -                          | -                           | -                     | -                                 | -                          | -                          | -                          | -                             | -                            |
| 1.1759 | 126  | 1.2167        | -                               | -                          | -                        | -                           | -                           | -                          | -                           | -                     | -                                 | -                          | -                          | -                          | -                             | -                            |
| 1.1944 | 128  | 1.202         | -                               | -                          | -                        | -                           | -                           | -                          | -                           | -                     | -                                 | -                          | -                          | -                          | -                             | -                            |
| 1.2130 | 130  | 1.1931        | -                               | -                          | -                        | -                           | -                           | -                          | -                           | -                     | -                                 | -                          | -                          | -                          | -                             | -                            |
| 1.2315 | 132  | 1.178         | 0.2842                          | 0.4731                     | 0.8755                   | 0.5114                      | 0.6814                      | 0.5611                     | 0.2731                      | 0.6122                | 0.9477                            | 0.3926                     | 0.5723                     | 0.4647                     | 0.4441                        | 0.5457                       |
| 1.25   | 134  | 1.1955        | -                               | -                          | -                        | -                           | -                           | -                          | -                           | -                     | -                                 | -                          | -                          | -                          | -                             | -                            |
| 1.2685 | 136  | 1.18          | -                               | -                          | -                        | -                           | -                           | -                          | -                           | -                     | -                                 | -                          | -                          | -                          | -                             | -                            |
| 1.2870 | 138  | 1.1771        | -                               | -                          | -                        | -                           | -                           | -                          | -                           | -                     | -                                 | -                          | -                          | -                          | -                             | -                            |
| 1.3056 | 140  | 1.173         | -                               | -                          | -                        | -                           | -                           | -                          | -                           | -                     | -                                 | -                          | -                          | -                          | -                             | -                            |
| 1.3241 | 142  | 1.141         | -                               | -                          | -                        | -                           | -                           | -                          | -                           | -                     | -                                 | -                          | -                          | -                          | -                             | -                            |
| 1.3426 | 144  | 1.1531        | 0.2816                          | 0.4822                     | 0.9067                   | 0.5164                      | 0.6609                      | 0.5758                     | 0.2713                      | 0.6295                | 0.9596                            | 0.4018                     | 0.5862                     | 0.4615                     | 0.4309                        | 0.5511                       |
| 1.3611 | 146  | 1.1608        | -                               | -                          | -                        | -                           | -                           | -                          | -                           | -                     | -                                 | -                          | -                          | -                          | -                             | -                            |
| 1.3796 | 148  | 1.1489        | -                               | -                          | -                        | -                           | -                           | -                          | -                           | -                     | -                                 | -                          | -                          | -                          | -                             | -                            |
| 1.3981 | 150  | 1.1531        | -                               | -                          | -                        | -                           | -                           | -                          | -                           | -                     | -                                 | -                          | -                          | -                          | -                             | -                            |
| 1.4167 | 152  | 1.1391        | -                               | -                          | -                        | -                           | -                           | -                          | -                           | -                     | -                                 | -                          | -                          | -                          | -                             | -                            |
| 1.4352 | 154  | 1.1405        | -                               | -                          | -                        | -                           | -                           | -                          | -                           | -                     | -                                 | -                          | -                          | -                          | -                             | -                            |
| 1.4537 | 156  | 1.1336        | 0.3180                          | 0.4810                     | 0.8891                   | 0.5077                      | 0.6655                      | 0.5609                     | 0.2797                      | 0.5979                | 0.9557                            | 0.3988                     | 0.6011                     | 0.5093                     | 0.4176                        | 0.5525                       |
| 1.4722 | 158  | 1.1165        | -                               | -                          | -                        | -                           | -                           | -                          | -                           | -                     | -                                 | -                          | -                          | -                          | -                             | -                            |
| 1.4907 | 160  | 1.1316        | -                               | -                          | -                        | -                           | -                           | -                          | -                           | -                     | -                                 | -                          | -                          | -                          | -                             | -                            |
| 1.5093 | 162  | 1.1328        | -                               | -                          | -                        | -                           | -                           | -                          | -                           | -                     | -                                 | -                          | -                          | -                          | -                             | -                            |
| 1.5278 | 164  | 1.1229        | -                               | -                          | -                        | -                           | -                           | -                          | -                           | -                     | -                                 | -                          | -                          | -                          | -                             | -                            |
| 1.5463 | 166  | 1.1312        | -                               | -                          | -                        | -                           | -                           | -                          | -                           | -                     | -                                 | -                          | -                          | -                          | -                             | -                            |
| 1.5648 | 168  | 1.1112        | 0.2801                          | 0.4865                     | 0.9104                   | 0.5040                      | 0.6631                      | 0.5666                     | 0.2847                      | 0.6059                | 0.9599                            | 0.4003                     | 0.5906                     | 0.4927                     | 0.4312                        | 0.5520                       |
| 1.5833 | 170  | 1.1304        | -                               | -                          | -                        | -                           | -                           | -                          | -                           | -                     | -                                 | -                          | -                          | -                          | -                             | -                            |
| 1.6019 | 172  | 1.1257        | -                               | -                          | -                        | -                           | -                           | -                          | -                           | -                     | -                                 | -                          | -                          | -                          | -                             | -                            |
| 1.6204 | 174  | 1.139         | -                               | -                          | -                        | -                           | -                           | -                          | -                           | -                     | -                                 | -                          | -                          | -                          | -                             | -                            |
| 1.6389 | 176  | 1.1116        | -                               | -                          | -                        | -                           | -                           | -                          | -                           | -                     | -                                 | -                          | -                          | -                          | -                             | -                            |
| 1.6574 | 178  | 1.1161        | -                               | -                          | -                        | -                           | -                           | -                          | -                           | -                     | -                                 | -                          | -                          | -                          | -                             | -                            |
| 1.6759 | 180  | 1.1024        | 0.2991                          | 0.4822                     | 0.9009                   | 0.4886                      | 0.6652                      | 0.5659                     | 0.2577                      | 0.6147                | 0.9597                            | 0.4051                     | 0.5747                     | 0.4585                     | 0.4207                        | 0.5456                       |
| 1.6944 | 182  | 1.1239        | -                               | -                          | -                        | -                           | -                           | -                          | -                           | -                     | -                                 | -                          | -                          | -                          | -                             | -                            |
| 1.7130 | 184  | 1.1266        | -                               | -                          | -                        | -                           | -                           | -                          | -                           | -                     | -                                 | -                          | -                          | -                          | -                             | -                            |
| 1.7315 | 186  | 1.1154        | -                               | -                          | -                        | -                           | -                           | -                          | -                           | -                     | -                                 | -                          | -                          | -                          | -                             | -                            |
| 1.75   | 188  | 1.1382        | -                               | -                          | -                        | -                           | -                           | -                          | -                           | -                     | -                                 | -                          | -                          | -                          | -                             | -                            |
| 1.7685 | 190  | 1.102         | -                               | -                          | -                        | -                           | -                           | -                          | -                           | -                     | -                                 | -                          | -                          | -                          | -                             | -                            |
| 1.7870 | 192  | 1.1046        | 0.3107                          | 0.4764                     | 0.9040                   | 0.4828                      | 0.6680                      | 0.5747                     | 0.2625                      | 0.5969                | 0.9567                            | 0.3948                     | 0.5801                     | 0.4641                     | 0.4313                        | 0.5464                       |
| 1.8056 | 194  | 1.1241        | -                               | -                          | -                        | -                           | -                           | -                          | -                           | -                     | -                                 | -                          | -                          | -                          | -                             | -                            |
| 1.8241 | 196  | 1.1266        | -                               | -                          | -                        | -                           | -                           | -                          | -                           | -                     | -                                 | -                          | -                          | -                          | -                             | -                            |
| 1.8426 | 198  | 1.1257        | -                               | -                          | -                        | -                           | -                           | -                          | -                           | -                     | -                                 | -                          | -                          | -                          | -                             | -                            |
| 1.8611 | 200  | 1.1148        | -                               | -                          | -                        | -                           | -                           | -                          | -                           | -                     | -                                 | -                          | -                          | -                          | -                             | -                            |
| 1.8796 | 202  | 1.1133        | -                               | -                          | -                        | -                           | -                           | -                          | -                           | -                     | -                                 | -                          | -                          | -                          | -                             | -                            |
| 1.8981 | 204  | 1.1149        | 0.2840                          | 0.4733                     | 0.9203                   | 0.4901                      | 0.6700                      | 0.5747                     | 0.2547                      | 0.6061                | 0.9594                            | 0.3972                     | 0.5856                     | 0.4572                     | 0.4180                        | 0.5454                       |
| 1.9167 | 206  | 1.1122        | -                               | -                          | -                        | -                           | -                           | -                          | -                           | -                     | -                                 | -                          | -                          | -                          | -                             | -                            |
| 1.9352 | 208  | 1.1259        | -                               | -                          | -                        | -                           | -                           | -                          | -                           | -                     | -                                 | -                          | -                          | -                          | -                             | -                            |
| 1.9537 | 210  | 1.1215        | -                               | -                          | -                        | -                           | -                           | -                          | -                           | -                     | -                                 | -                          | -                          | -                          | -                             | -                            |
| 1.9722 | 212  | 1.1047        | -                               | -                          | -                        | -                           | -                           | -                          | -                           | -                     | -                                 | -                          | -                          | -                          | -                             | -                            |
| 1.9907 | 214  | 1.1166        | -                               | -                          | -                        | -                           | -                           | -                          | -                           | -                     | -                                 | -                          | -                          | -                          | -                             | -                            |

</details>

### Framework Versions
- Python: 3.11.9
- Sentence Transformers: 3.3.1
- Transformers: 4.48.0.dev0
- PyTorch: 2.6.0.dev20241112+cu121
- Accelerate: 1.2.1
- Datasets: 2.21.0
- Tokenizers: 0.21.0

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

#### CachedMultipleNegativesRankingLoss
```bibtex
@misc{gao2021scaling,
    title={Scaling Deep Contrastive Learning Batch Size under Memory Limited Setup},
    author={Luyu Gao and Yunyi Zhang and Jiawei Han and Jamie Callan},
    year={2021},
    eprint={2101.06983},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->