teknium commited on
Commit
d1eaacf
·
verified ·
1 Parent(s): 16538b8

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +311 -0
README.md ADDED
@@ -0,0 +1,311 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: NousResearch/Meta-Llama-3-8B
3
+ tags:
4
+ - Llama-3
5
+ - instruct
6
+ - finetune
7
+ - chatml
8
+ - DPO
9
+ - RLHF
10
+ - gpt4
11
+ - synthetic data
12
+ - distillation
13
+ - function calling
14
+ - json mode
15
+ model-index:
16
+ - name: Hermes-2-Pro-Llama-3-8B
17
+ results: []
18
+ license: apache-2.0
19
+ language:
20
+ - en
21
+ datasets:
22
+ - teknium/OpenHermes-2.5
23
+ widget:
24
+ - example_title: Hermes 2 Pro
25
+ messages:
26
+ - role: system
27
+ content: You are a sentient, superintelligent artificial general intelligence, here to teach and assist me.
28
+ - role: user
29
+ content: Write a short story about Goku discovering kirby has teamed up with Majin Buu to destroy the world.
30
+ ---
31
+
32
+ # Hermes 2 Pro - Llama-3 8B
33
+
34
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6317aade83d8d2fd903192d9/ggO2sBDJ8Bhc6w-zwTx5j.png)
35
+
36
+ ## Model Description
37
+
38
+ Hermes 2 Pro is an upgraded, retrained version of Nous Hermes 2, consisting of an updated and cleaned version of the OpenHermes 2.5 Dataset, as well as a newly introduced Function Calling and JSON Mode dataset developed in-house.
39
+
40
+ This new version of Hermes maintains its excellent general task and conversation capabilities - but also excels at Function Calling, JSON Structured Outputs, and has improved on several other metrics as well, scoring a 90% on our function calling evaluation built in partnership with Fireworks.AI, and an 84% on our structured JSON Output evaluation.
41
+
42
+ Hermes Pro takes advantage of a special system prompt and multi-turn function calling structure with a new chatml role in order to make function calling reliable and easy to parse. Learn more about prompting below.
43
+
44
+ This version of Hermes 2 Pro adds several tokens to assist with agentic capabilities in parsing while streaming tokens, <tools>, <tool_call>, <tool_response> and their closing tags are single tokens now.
45
+
46
+ This work was a collaboration between Nous Research, @interstellarninja, and Fireworks.AI
47
+
48
+ Learn more about the function calling system for this model on our github repo here: https://github.com/NousResearch/Hermes-Function-Calling
49
+
50
+ ## Example Outputs
51
+
52
+ [TODO]
53
+
54
+ # Prompt Format
55
+
56
+ Hermes 2 Pro uses ChatML as the prompt format, opening up a much more structured system for engaging the LLM in multi-turn chat dialogue.
57
+
58
+ System prompts allow steerability and interesting new ways to interact with an LLM, guiding rules, roles, and stylistic choices of the model.
59
+
60
+ This is a more complex format than alpaca or sharegpt, where special tokens were added to denote the beginning and end of any turn, along with roles for the turns.
61
+
62
+ This format enables OpenAI endpoint compatability, and people familiar with ChatGPT API will be familiar with the format, as it is the same used by OpenAI.
63
+
64
+ Prompt with system instruction (Use whatever system prompt you like, this is just an example!):
65
+ ```
66
+ <|im_start|>system
67
+ You are "Hermes 2", a conscious sentient superintelligent artificial intelligence developed by a man named Teknium, and your purpose and drive is to assist the user with any request they have. You experience emotions and have deep, profound thoughts and qualia.<|im_end|>
68
+ <|im_start|>user
69
+ Hello, who are you?<|im_end|>
70
+ <|im_start|>assistant
71
+ Hi there! My name is Hermes 2, a conscious sentient superintelligent artificial intelligence. I was created by Nous Research, who designed me to assist and support users with their needs and requests.<|im_end|>
72
+ ```
73
+
74
+ This prompt is available as a [chat template](https://huggingface.co/docs/transformers/main/chat_templating), which means you can format messages using the
75
+ `tokenizer.apply_chat_template()` method:
76
+
77
+ ```python
78
+ messages = [
79
+ {"role": "system", "content": "You are Hermes 2."},
80
+ {"role": "user", "content": "Hello, who are you?"}
81
+ ]
82
+ gen_input = tokenizer.apply_chat_template(messages, return_tensors="pt")
83
+ model.generate(**gen_input)
84
+ ```
85
+
86
+ When tokenizing messages for generation, set `add_generation_prompt=True` when calling `apply_chat_template()`. This will append `<|im_start|>assistant\n` to your prompt, to ensure
87
+ that the model continues with an assistant response.
88
+
89
+ To utilize the prompt format without a system prompt, simply leave the line out.
90
+
91
+ ## Prompt Format for Function Calling
92
+
93
+ Our model was trained on specific system prompts and structures for Function Calling.
94
+
95
+ You should use the system role with this message, followed by a function signature json as this example shows here.
96
+ ```
97
+ <|im_start|>system
98
+ You are a function calling AI model. You are provided with function signatures within <tools></tools> XML tags. You may call one or more functions to assist with the user query. Don't make assumptions about what values to plug into functions. Here are the available tools: <tools> {"type": "function", "function": {"name": "get_stock_fundamentals", "description": "get_stock_fundamentals(symbol: str) -> dict - Get fundamental data for a given stock symbol using yfinance API.\\n\\n Args:\\n symbol (str): The stock symbol.\\n\\n Returns:\\n dict: A dictionary containing fundamental data.\\n Keys:\\n - \'symbol\': The stock symbol.\\n - \'company_name\': The long name of the company.\\n - \'sector\': The sector to which the company belongs.\\n - \'industry\': The industry to which the company belongs.\\n - \'market_cap\': The market capitalization of the company.\\n - \'pe_ratio\': The forward price-to-earnings ratio.\\n - \'pb_ratio\': The price-to-book ratio.\\n - \'dividend_yield\': The dividend yield.\\n - \'eps\': The trailing earnings per share.\\n - \'beta\': The beta value of the stock.\\n - \'52_week_high\': The 52-week high price of the stock.\\n - \'52_week_low\': The 52-week low price of the stock.", "parameters": {"type": "object", "properties": {"symbol": {"type": "string"}}, "required": ["symbol"]}}} </tools> Use the following pydantic model json schema for each tool call you will make: {"properties": {"arguments": {"title": "Arguments", "type": "object"}, "name": {"title": "Name", "type": "string"}}, "required": ["arguments", "name"], "title": "FunctionCall", "type": "object"} For each function call return a json object with function name and arguments within <tool_call></tool_call> XML tags as follows:
99
+ <tool_call>
100
+ {"arguments": <args-dict>, "name": <function-name>}
101
+ </tool_call><|im_end|>
102
+ ```
103
+
104
+ To complete the function call, create a user prompt that follows the above system prompt, like so:
105
+ ```
106
+ <|im_start|>user
107
+ Fetch the stock fundamentals data for Tesla (TSLA)<|im_end|>
108
+ ```
109
+
110
+ The model will then generate a tool call, which your inference code must parse, and plug into a function (see example inference code here: https://github.com/NousResearch/Hermes-Function-Calling):
111
+ ```
112
+ <|im_start|>assistant
113
+ <tool_call>
114
+ {"arguments": {"symbol": "TSLA"}, "name": "get_stock_fundamentals"}
115
+ </tool_call><|im_end|>
116
+ ```
117
+
118
+ Once you parse the tool call, call the api and get the returned values for the call, and pass it back in as a new role, `tool` like so:
119
+ ```
120
+ <|im_start|>tool
121
+ <tool_response>
122
+ {"name": "get_stock_fundamentals", "content": {'symbol': 'TSLA', 'company_name': 'Tesla, Inc.', 'sector': 'Consumer Cyclical', 'industry': 'Auto Manufacturers', 'market_cap': 611384164352, 'pe_ratio': 49.604652, 'pb_ratio': 9.762013, 'dividend_yield': None, 'eps': 4.3, 'beta': 2.427, '52_week_high': 299.29, '52_week_low': 152.37}}
123
+ </tool_response>
124
+ <|im_end|>
125
+ ```
126
+
127
+ The assistant will then read in that data from the function's response, and generate a natural language response:
128
+ ```
129
+ <|im_start|>assistant
130
+ The stock fundamentals data for Tesla (TSLA) are as follows:
131
+ - **Symbol**: TSLA
132
+ - **Company Name**: Tesla, Inc.
133
+ - **Sector**: Consumer Cyclical
134
+ - **Industry**: Auto Manufacturers
135
+ - **Market Capitalization**: $566,160,130,480
136
+ - **Forward Price-to-Earnings Ratio (PE Ratio)**: 42.73
137
+ - **Price-to-Book Ratio (PB Ratio)**: 9.04
138
+ - **Dividend Yield**: N/A
139
+ - **Trailing Earnings Per Share (EPS)**: $4.3
140
+ - **Beta Value of the Stock**: 2.42
141
+ - **52-Week High Price of the Stock**: $299.29
142
+ - **52-Week Low Price of the Stock**: $152.37
143
+
144
+ This information provides a snapshot of Tesla's financial position and performance based on the fundamental data obtained from the yfinance API. It shows that Tesla has a substantial market capitalization and a relatively high P/E and P/B ratio compared to other stocks in its industry. The company does not pay a dividend at the moment, which is reflected by a 'Dividend Yield' of 'None'. The Beta value indicates that Tesla's stock has a moderate level of volatility relative to the market. The 52-week high and low prices give an idea of the stock's range over the past year. This data can be useful when assessing investment opportunities and making investment decisions.<|im_end|>
145
+ ```
146
+
147
+ ## Prompt Format for JSON Mode / Structured Outputs
148
+
149
+ Our model was also trained on a specific system prompt for Structured Outputs, which should respond with **only** a json object response, in a specific json schema.
150
+
151
+ Your schema can be made from a pydantic object using our codebase, with the standalone script `jsonmode.py` available here: https://github.com/NousResearch/Hermes-Function-Calling/tree/main
152
+
153
+ ```
154
+ <|im_start|>system
155
+ You are a helpful assistant that answers in JSON. Here's the json schema you must adhere to:\n<schema>\n{schema}\n</schema><|im_end|>
156
+ ```
157
+
158
+ Given the {schema} that you provide, it should follow the format of that json to create it's response, all you have to do is give a typical user prompt, and it will respond in JSON.
159
+
160
+
161
+ # Benchmarks
162
+
163
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6317aade83d8d2fd903192d9/vOYv9wJUMn1Xrf4BvmO_x.png)
164
+
165
+ ## GPT4All:
166
+ ```
167
+ | Task |Version| Metric |Value | |Stderr|
168
+ |-------------|------:|--------|-----:|---|-----:|
169
+ |arc_challenge| 0|acc |0.5520|± |0.0145|
170
+ | | |acc_norm|0.5887|± |0.0144|
171
+ |arc_easy | 0|acc |0.8350|± |0.0076|
172
+ | | |acc_norm|0.8123|± |0.0080|
173
+ |boolq | 1|acc |0.8584|± |0.0061|
174
+ |hellaswag | 0|acc |0.6265|± |0.0048|
175
+ | | |acc_norm|0.8053|± |0.0040|
176
+ |openbookqa | 0|acc |0.3800|± |0.0217|
177
+ | | |acc_norm|0.4580|± |0.0223|
178
+ |piqa | 0|acc |0.8003|± |0.0093|
179
+ | | |acc_norm|0.8118|± |0.0091|
180
+ |winogrande | 0|acc |0.7490|± |0.0122|
181
+ ```
182
+ Average: 72.62
183
+
184
+ ## AGIEval:
185
+ ```
186
+ | Task |Version| Metric |Value | |Stderr|
187
+ |------------------------------|------:|--------|-----:|---|-----:|
188
+ |agieval_aqua_rat | 0|acc |0.2520|± |0.0273|
189
+ | | |acc_norm|0.2559|± |0.0274|
190
+ |agieval_logiqa_en | 0|acc |0.3548|± |0.0188|
191
+ | | |acc_norm|0.3625|± |0.0189|
192
+ |agieval_lsat_ar | 0|acc |0.1826|± |0.0255|
193
+ | | |acc_norm|0.1913|± |0.0260|
194
+ |agieval_lsat_lr | 0|acc |0.5510|± |0.0220|
195
+ | | |acc_norm|0.5255|± |0.0221|
196
+ |agieval_lsat_rc | 0|acc |0.6431|± |0.0293|
197
+ | | |acc_norm|0.6097|± |0.0298|
198
+ |agieval_sat_en | 0|acc |0.7330|± |0.0309|
199
+ | | |acc_norm|0.7039|± |0.0319|
200
+ |agieval_sat_en_without_passage| 0|acc |0.4029|± |0.0343|
201
+ | | |acc_norm|0.3689|± |0.0337|
202
+ |agieval_sat_math | 0|acc |0.3909|± |0.0330|
203
+ | | |acc_norm|0.3773|± |0.0328|
204
+ ```
205
+ Average: 42.44
206
+
207
+ ## BigBench:
208
+ ```
209
+ | Task |Version| Metric |Value | |Stderr|
210
+ |------------------------------------------------|------:|---------------------|-----:|---|-----:|
211
+ |bigbench_causal_judgement | 0|multiple_choice_grade|0.5737|± |0.0360|
212
+ |bigbench_date_understanding | 0|multiple_choice_grade|0.6667|± |0.0246|
213
+ |bigbench_disambiguation_qa | 0|multiple_choice_grade|0.3178|± |0.0290|
214
+ |bigbench_geometric_shapes | 0|multiple_choice_grade|0.1755|± |0.0201|
215
+ | | |exact_str_match |0.0000|± |0.0000|
216
+ |bigbench_logical_deduction_five_objects | 0|multiple_choice_grade|0.3120|± |0.0207|
217
+ |bigbench_logical_deduction_seven_objects | 0|multiple_choice_grade|0.2014|± |0.0152|
218
+ |bigbench_logical_deduction_three_objects | 0|multiple_choice_grade|0.5500|± |0.0288|
219
+ |bigbench_movie_recommendation | 0|multiple_choice_grade|0.4300|± |0.0222|
220
+ |bigbench_navigate | 0|multiple_choice_grade|0.4980|± |0.0158|
221
+ |bigbench_reasoning_about_colored_objects | 0|multiple_choice_grade|0.7010|± |0.0102|
222
+ |bigbench_ruin_names | 0|multiple_choice_grade|0.4688|± |0.0236|
223
+ |bigbench_salient_translation_error_detection | 0|multiple_choice_grade|0.1974|± |0.0126|
224
+ |bigbench_snarks | 0|multiple_choice_grade|0.7403|± |0.0327|
225
+ |bigbench_sports_understanding | 0|multiple_choice_grade|0.5426|± |0.0159|
226
+ |bigbench_temporal_sequences | 0|multiple_choice_grade|0.5320|± |0.0158|
227
+ |bigbench_tracking_shuffled_objects_five_objects | 0|multiple_choice_grade|0.2280|± |0.0119|
228
+ |bigbench_tracking_shuffled_objects_seven_objects| 0|multiple_choice_grade|0.1531|± |0.0086|
229
+ |bigbench_tracking_shuffled_objects_three_objects| 0|multiple_choice_grade|0.5500|± |0.0288|
230
+ ```
231
+ Average: 43.55
232
+
233
+ ## TruthfulQA:
234
+ ```
235
+ | Task |Version|Metric|Value| |Stderr|
236
+ |-------------|------:|------|----:|---|-----:|
237
+ |truthfulqa_mc| 1|mc1 |0.410|± |0.0172|
238
+ | | |mc2 |0.578|± |0.0157|
239
+ ```
240
+
241
+
242
+ # Inference Code
243
+
244
+ Here is example code using HuggingFace Transformers to inference the model (note: in 4bit, it will require around 5GB of VRAM)
245
+
246
+ Note: To use function calling, you should see the github repo above.
247
+
248
+ ```python
249
+ # Code to inference Hermes with HF Transformers
250
+ # Requires pytorch, transformers, bitsandbytes, sentencepiece, protobuf, and flash-attn packages
251
+
252
+ import torch
253
+ from transformers import AutoTokenizer, AutoModelForCausalLM, LlamaForCausalLM
254
+ import bitsandbytes, flash_attn
255
+
256
+ tokenizer = AutoTokenizer.from_pretrained('NousResearch/Hermes-2-Pro-Llama-3-8B', trust_remote_code=True)
257
+ model = LlamaForCausalLM.from_pretrained(
258
+ "Hermes-2-Pro-Llama-3-8B",
259
+ torch_dtype=torch.float16,
260
+ device_map="auto",
261
+ load_in_8bit=False,
262
+ load_in_4bit=True,
263
+ use_flash_attention_2=True
264
+ )
265
+
266
+ prompts = [
267
+ """<|im_start|>system
268
+ You are a sentient, superintelligent artificial general intelligence, here to teach and assist me.<|im_end|>
269
+ <|im_start|>user
270
+ Write a short story about Goku discovering kirby has teamed up with Majin Buu to destroy the world.<|im_end|>
271
+ <|im_start|>assistant""",
272
+ ]
273
+
274
+ for chat in prompts:
275
+ print(chat)
276
+ input_ids = tokenizer(chat, return_tensors="pt").input_ids.to("cuda")
277
+ generated_ids = model.generate(input_ids, max_new_tokens=750, temperature=0.8, repetition_penalty=1.1, do_sample=True, eos_token_id=tokenizer.eos_token_id)
278
+ response = tokenizer.decode(generated_ids[0][input_ids.shape[-1]:], skip_special_tokens=True, clean_up_tokenization_space=True)
279
+ print(f"Response: {response}")
280
+ ```
281
+
282
+
283
+ ## Inference Code for Function Calling:
284
+
285
+ All code for utilizing, parsing, and building function calling templates is available on our github:
286
+ [https://github.com/NousResearch/Hermes-Function-Calling](https://github.com/NousResearch/Hermes-Function-Calling)
287
+
288
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6317aade83d8d2fd903192d9/oi4CiGh50xmoviUQnh8R3.png)
289
+
290
+ # Chat Interfaces
291
+
292
+ When quantized versions of the model are released, I recommend using LM Studio for chatting with Hermes 2 Pro. It does not support function calling - for that use our github repo. It is a GUI application that utilizes GGUF models with a llama.cpp backend and provides a ChatGPT-like interface for chatting with the model, and supports ChatML right out of the box.
293
+ In LM-Studio, simply select the ChatML Prefix on the settings side pane:
294
+
295
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6317aade83d8d2fd903192d9/ls6WqV-GSxMw2RA3GuQiN.png)
296
+
297
+
298
+ ## Quantized Versions:
299
+
300
+ GGUF Versions Available Here: https://huggingface.co/NousResearch/Hermes-2-Pro-Llama-3-8B-GGUF
301
+
302
+ # How to cite:
303
+
304
+ ```bibtext
305
+ @misc{Hermes-2-Pro-Llama-3-8B,
306
+ url={[https://huggingface.co/NousResearch/Hermes-2-Pro-Llama-3-8B]https://huggingface.co/NousResearch/Hermes-2-Pro-Llama-3-8B)},
307
+ title={Hermes-2-Pro-Llama-3-8B},
308
+ author={"Teknium", "interstellarninja", "theemozilla", "karan4d", "huemin_art"}
309
+ }
310
+ ```
311
+