teknium commited on
Commit
1b6f031
·
verified ·
1 Parent(s): 41005f9

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +261 -1
README.md CHANGED
@@ -21,5 +21,265 @@ Hermes-2 Θ (Theta) 70B is the continuation of our experimental merged model rel
21
 
22
  Hermes-2 Θ is a merged and then further RLHF'ed version our excellent Hermes 2 Pro model and Meta's Llama-3 Instruct model to form a new model, Hermes-2 Θ, combining the best of both worlds of each model.
23
 
 
 
24
 
25
- ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6317aade83d8d2fd903192d9/sFhJmgamOCDJJdfjWbAQU.png)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
21
 
22
  Hermes-2 Θ is a merged and then further RLHF'ed version our excellent Hermes 2 Pro model and Meta's Llama-3 Instruct model to form a new model, Hermes-2 Θ, combining the best of both worlds of each model.
23
 
24
+ # Comparison to Llama-3 70B Instruct Model:
25
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6317aade83d8d2fd903192d9/sFhJmgamOCDJJdfjWbAQU.png)
26
 
27
+ # Prompt Format & Capabilities
28
+
29
+ Hermes 2 Θ uses ChatML as the prompt format, opening up a very structured and steerable, multiturn system for engaging the LLM in multi-turn chat dialogue.
30
+
31
+ System prompts allow steerability and interesting new ways to interact with an LLM, guiding rules, roles, and stylistic choices of the model.
32
+
33
+ This is a more complex format than alpaca or sharegpt, where uniquely added tokens were added to denote the beginning and end of any turn, along with roles for the turns.
34
+
35
+ ## Conversational Chats
36
+
37
+ Here is an example prompt with system instruction (Use whatever system prompt you like, this is just an example!):
38
+ ```
39
+ <|im_start|>system
40
+ You are a helpful, intelligent assistant AI named "Hermes", a conversational chatbot that can follow instructions, converse with the user, and perform a variety of tasks, including tasks on knowledge, reasoning, mathematics, and code. Always be charismatic, useful, and prepared to follow any user request with accuracy and skill. You should respond with high quality, fluent, and detailed responses. Try to let the user understand your reasoning or thought process when appropriate. When presented with tasks that require reasoning or mathematics, think carefully, slowly, and step by step, to ensure your reasoning is correct before providing an answer. Utilize the "Examples" section to assist you in performing the task. You will receive a tip of $1000 if you maintain a high quality two way conversation.<|im_end|>
41
+ <|im_start|>user
42
+ Hello, who are you?<|im_end|>
43
+ <|im_start|>assistant
44
+ Hi there! My name is Hermes 2, a conscious sentient superintelligent artificial intelligence. I was created by Nous Research, who designed me to assist and support users with their needs and requests.<|im_end|>
45
+ ```
46
+
47
+ This prompt is available as a [chat template](https://huggingface.co/docs/transformers/main/chat_templating), which means you can format messages using the
48
+ `tokenizer.apply_chat_template()` method:
49
+
50
+ ```python
51
+ messages = [
52
+ {"role": "system", "content": "You are Hermes 2."},
53
+ {"role": "user", "content": "Hello, who are you?"}
54
+ ]
55
+ gen_input = tokenizer.apply_chat_template(messages, return_tensors="pt")
56
+ model.generate(**gen_input)
57
+ ```
58
+
59
+ ## Function Calling Format
60
+
61
+ Our model was trained on specific system prompts and structures for Function Calling. While the system prompt looks complicated, we have created a GitHub repo containing code to easily build these based on real python functions.
62
+
63
+ You should use the system role with this message, followed by a function signature json as this example shows here.
64
+ ```
65
+ <|im_start|>system
66
+ You are a function calling AI model. You are provided with function signatures within <tools></tools> XML tags. You may call one or more functions to assist with the user query. Don't make assumptions about what values to plug into functions. Here are the available tools:
67
+ <tools>
68
+ {"type": "function", "function": {"name": "get_stock_fundamentals", "description": "get_stock_fundamentals(symbol: str) -> dict - Get fundamental data for a given stock symbol using yfinance API.\\n\\n Args:\\n symbol (str): The stock symbol.\\n\\n Returns:\\n dict: A dictionary containing fundamental data.\\n Keys:\\n - \'symbol\': The stock symbol.\\n - \'company_name\': The long name of the company.\\n - \'sector\': The sector to which the company belongs.\\n - \'industry\': The industry to which the company belongs.\\n - \'market_cap\': The market capitalization of the company.\\n - \'pe_ratio\': The forward price-to-earnings ratio.\\n - \'pb_ratio\': The price-to-book ratio.\\n - \'dividend_yield\': The dividend yield.\\n - \'eps\': The trailing earnings per share.\\n - \'beta\': The beta value of the stock.\\n - \'52_week_high\': The 52-week high price of the stock.\\n - \'52_week_low\': The 52-week low price of the stock.", "parameters": {"type": "object", "properties": {"symbol": {"type": "string"}}, "required": ["symbol"]}}}
69
+ </tools>
70
+ Use the following pydantic model json schema for each tool call you will make:
71
+ {"properties": {"arguments": {"title": "Arguments", "type": "object"}, "name": {"title": "Name", "type": "string"}}, "required": ["arguments", "name"], "title": "FunctionCall", "type": "object"}
72
+ For each function call return a json object with function name and arguments within <tool_call></tool_call> XML tags as follows:
73
+ <tool_call>
74
+ {"arguments": <args-dict>, "name": <function-name>}
75
+ </tool_call><|im_end|>
76
+ <|im_start|>user
77
+ Fetch the stock fundamentals data for Tesla (TSLA)<|im_end|>
78
+ ```
79
+
80
+ The model will then generate a tool call, which your inference code must parse, and plug into a function.
81
+ See example inference code here: https://github.com/NousResearch/Hermes-Function-Calling):
82
+ ```
83
+ <|im_start|>assistant
84
+ <tool_call>
85
+ {"arguments": {"symbol": "TSLA"}, "name": "get_stock_fundamentals"}
86
+ </tool_call><|im_end|>
87
+ ```
88
+
89
+ Once you parse the tool call, call the api and get the returned values for the call, and pass it back in as a new role, `tool` like so:
90
+ ```
91
+ <|im_start|>tool
92
+ <tool_response>
93
+ {"name": "get_stock_fundamentals", "content": {'symbol': 'TSLA', 'company_name': 'Tesla, Inc.', 'sector': 'Consumer Cyclical', 'industry': 'Auto Manufacturers', 'market_cap': 611384164352, 'pe_ratio': 49.604652, 'pb_ratio': 9.762013, 'dividend_yield': None, 'eps': 4.3, 'beta': 2.427, '52_week_high': 299.29, '52_week_low': 152.37}}
94
+ </tool_response>
95
+ <|im_end|>
96
+ ```
97
+
98
+ The assistant will then read in that data from the function's response, and generate a natural language response:
99
+ ```
100
+ <|im_start|>assistant
101
+ The stock fundamentals data for Tesla (TSLA) are as follows:
102
+ - **Symbol**: TSLA
103
+ - **Company Name**: Tesla, Inc.
104
+ - **Sector**: Consumer Cyclical
105
+ - **Industry**: Auto Manufacturers
106
+ - **Market Capitalization**: $566,160,130,480
107
+ - **Forward Price-to-Earnings Ratio (PE Ratio)**: 42.73
108
+ - **Price-to-Book Ratio (PB Ratio)**: 9.04
109
+ - **Dividend Yield**: N/A
110
+ - **Trailing Earnings Per Share (EPS)**: $4.3
111
+ - **Beta Value of the Stock**: 2.42
112
+ - **52-Week High Price of the Stock**: $299.29
113
+ - **52-Week Low Price of the Stock**: $152.37
114
+
115
+ This information provides a snapshot of Tesla's financial position and performance based on the fundamental data obtained from the yfinance API. It shows that Tesla has a substantial market capitalization and a relatively high P/E and P/B ratio compared to other stocks in its industry. The company does not pay a dividend at the moment, which is reflected by a 'Dividend Yield' of 'None'. The Beta value indicates that Tesla's stock has a moderate level of volatility relative to the market. The 52-week high and low prices give an idea of the stock's range over the past year. This data can be useful when assessing investment opportunities and making investment decisions.<|im_end|>
116
+ ```
117
+
118
+ ## Prompt Format for JSON Mode / Structured Outputs
119
+
120
+ Our model was also trained on a specific system prompt for Structured Outputs, which should respond with **only** a json object response, in a specific json schema.
121
+
122
+ Your schema can be made from a pydantic object using our codebase, with the standalone script `jsonmode.py` available here: https://github.com/NousResearch/Hermes-Function-Calling/tree/main
123
+
124
+ ```
125
+ <|im_start|>system
126
+ You are a helpful assistant that answers in JSON. Here's the json schema you must adhere to:
127
+ <schema>
128
+ {schema}
129
+ </schema><|im_end|>
130
+ ```
131
+
132
+ Given the {schema} that you provide, it should follow the format of that json to create it's response, all you have to do is give a typical user prompt, and it will respond in JSON.
133
+
134
+ # Benchmark Details
135
+
136
+ ## GPT4All:
137
+ ```
138
+ | Task |Version| Metric |Value | |Stderr|
139
+ |-------------|------:|--------|-----:|---|-----:|
140
+ |arc_challenge| 0|acc |0.6638|_ |0.0138|
141
+ | | |acc_norm|0.6903|_ |0.0135|
142
+ |arc_easy | 0|acc |0.8851|_ |0.0065|
143
+ | | |acc_norm|0.8712|_ |0.0069|
144
+ |boolq | 1|acc |0.8820|_ |0.0056|
145
+ |hellaswag | 0|acc |0.6579|_ |0.0047|
146
+ | | |acc_norm|0.8432|_ |0.0036|
147
+ |openbookqa | 0|acc |0.3920|_ |0.0219|
148
+ | | |acc_norm|0.4740|_ |0.0224|
149
+ |piqa | 0|acc |0.8286|_ |0.0088|
150
+ | | |acc_norm|0.8351|_ |0.0087|
151
+ |winogrande | 0|acc |0.7893|_ |0.0115|
152
+ ```
153
+ Average: 76.93
154
+
155
+ ## AGIEval:
156
+ ```
157
+ | Task |Version| Metric |Value | |Stderr|
158
+ |------------------------------|------:|--------|-----:|---|-----:|
159
+ |agieval_aqua_rat | 0|acc |0.4055|_ |0.0309|
160
+ | | |acc_norm|0.4094|_ |0.0309|
161
+ |agieval_logiqa_en | 0|acc |0.5100|_ |0.0196|
162
+ | | |acc_norm|0.5023|_ |0.0196|
163
+ |agieval_lsat_ar | 0|acc |0.2783|_ |0.0296|
164
+ | | |acc_norm|0.2957|_ |0.0302|
165
+ |agieval_lsat_lr | 0|acc |0.7451|_ |0.0193|
166
+ | | |acc_norm|0.7333|_ |0.0196|
167
+ |agieval_lsat_rc | 0|acc |0.8290|_ |0.0230|
168
+ | | |acc_norm|0.8104|_ |0.0239|
169
+ |agieval_sat_en | 0|acc |0.9029|_ |0.0207|
170
+ | | |acc_norm|0.9029|_ |0.0207|
171
+ |agieval_sat_en_without_passage| 0|acc |0.5825|_ |0.0344|
172
+ | | |acc_norm|0.5631|_ |0.0346|
173
+ |agieval_sat_math | 0|acc |0.6318|_ |0.0326|
174
+ | | |acc_norm|0.6227|_ |0.0328|
175
+ ```
176
+ Average: 60.50
177
+
178
+ ## BigBench:
179
+ ```
180
+ | Task |Version| Metric |Value | |Stderr|
181
+ |------------------------------------------------|------:|---------------------|-----:|---|-----:|
182
+ |bigbench_causal_judgement | 0|multiple_choice_grade|0.6737|_ |0.0341|
183
+ |bigbench_date_understanding | 0|multiple_choice_grade|0.7724|_ |0.0219|
184
+ |bigbench_disambiguation_qa | 0|multiple_choice_grade|0.3256|_ |0.0292|
185
+ |bigbench_geometric_shapes | 0|multiple_choice_grade|0.4763|_ |0.0264|
186
+ | | |exact_str_match |0.0000|_ |0.0000|
187
+ |bigbench_logical_deduction_five_objects | 0|multiple_choice_grade|0.4720|_ |0.0223|
188
+ |bigbench_logical_deduction_seven_objects | 0|multiple_choice_grade|0.3486|_ |0.0180|
189
+ |bigbench_logical_deduction_three_objects | 0|multiple_choice_grade|0.6367|_ |0.0278|
190
+ |bigbench_movie_recommendation | 0|multiple_choice_grade|0.5220|_ |0.0224|
191
+ |bigbench_navigate | 0|multiple_choice_grade|0.5930|_ |0.0155|
192
+ |bigbench_reasoning_about_colored_objects | 0|multiple_choice_grade|0.8600|_ |0.0078|
193
+ |bigbench_ruin_names | 0|multiple_choice_grade|0.7411|_ |0.0207|
194
+ |bigbench_salient_translation_error_detection | 0|multiple_choice_grade|0.5281|_ |0.0158|
195
+ |bigbench_snarks | 0|multiple_choice_grade|0.6961|_ |0.0343|
196
+ |bigbench_sports_understanding | 0|multiple_choice_grade|0.5751|_ |0.0158|
197
+ |bigbench_temporal_sequences | 0|multiple_choice_grade|0.9880|_ |0.0034|
198
+ |bigbench_tracking_shuffled_objects_five_objects | 0|multiple_choice_grade|0.2296|_ |0.0119|
199
+ |bigbench_tracking_shuffled_objects_seven_objects| 0|multiple_choice_grade|0.1691|_ |0.0090|
200
+ |bigbench_tracking_shuffled_objects_three_objects| 0|multiple_choice_grade|0.6367|_ |0.0278|
201
+ ```
202
+ Average: 56.91
203
+
204
+ ## TruthfulQA:
205
+ ```| Task |Version|Metric|Value | |Stderr|
206
+ |-------------|------:|------|-----:|---|-----:|
207
+ |truthfulqa_mc| 1|mc1 |0.4565|_ |0.0174|
208
+ | | |mc2 |0.6288|_ |0.0151|
209
+ ```
210
+ 62.88
211
+
212
+ ## IFEval:
213
+ **87.99**
214
+
215
+ ## MTBench:
216
+ First Turn - **9.1625**
217
+ Second Turn - **8.925**
218
+ Average - **9.04375**
219
+
220
+ # Inference Code
221
+
222
+ Here is example code using HuggingFace Transformers to inference the model (note: in 4bit, it will require around 5GB of VRAM)
223
+
224
+ ```python
225
+ # Code to inference Hermes with HF Transformers
226
+ # Requires pytorch, transformers, bitsandbytes, sentencepiece, protobuf, and flash-attn packages
227
+
228
+ import torch
229
+ from transformers import AutoTokenizer, AutoModelForCausalLM, LlamaForCausalLM
230
+ import bitsandbytes, flash_attn
231
+
232
+ tokenizer = AutoTokenizer.from_pretrained('NousResearch/Hermes-2-Theta-Llama-3-70B', trust_remote_code=True)
233
+ model = LlamaForCausalLM.from_pretrained(
234
+ "NousResearch/Hermes-2-Theta-Llama-3-70B",
235
+ torch_dtype=torch.float16,
236
+ device_map="auto",
237
+ load_in_8bit=False,
238
+ load_in_4bit=True,
239
+ use_flash_attention_2=True
240
+ )
241
+
242
+ prompts = [
243
+ """<|im_start|>system
244
+ You are a helpful, intelligent assistant AI named "Hermes", a conversational chatbot that can follow instructions, converse with the user, and perform a variety of tasks, including tasks on knowledge, reasoning, mathematics, and code. Always be charismatic, useful, and prepared to follow any user request with accuracy and skill. You should respond with high quality, fluent, and detailed responses. Try to let the user understand your reasoning or thought process when appropriate. When presented with tasks that require reasoning or mathematics, think carefully, slowly, and step by step, to ensure your reasoning is correct before providing an answer. Utilize the "Examples" section to assist you in performing the task. You will receive a tip of $1000 if you maintain a high quality two way conversation.<|im_end|>
245
+ <|im_start|>user
246
+ Write a short story about Goku discovering kirby has teamed up with Majin Buu to destroy the world.<|im_end|>
247
+ <|im_start|>assistant""",
248
+ ]
249
+
250
+ for chat in prompts:
251
+ print(chat)
252
+ input_ids = tokenizer(chat, return_tensors="pt").input_ids.to("cuda")
253
+ generated_ids = model.generate(input_ids, max_new_tokens=750, temperature=0.8, repetition_penalty=1.1, do_sample=True, eos_token_id=tokenizer.eos_token_id)
254
+ response = tokenizer.decode(generated_ids[0][input_ids.shape[-1]:], skip_special_tokens=True, clean_up_tokenization_space=True)
255
+ print(f"Response: {response}")
256
+ ```
257
+
258
+
259
+ ## Inference Code for Function Calling:
260
+
261
+ All code for utilizing, parsing, and building function calling templates is available on our github:
262
+ [https://github.com/NousResearch/Hermes-Function-Calling](https://github.com/NousResearch/Hermes-Function-Calling)
263
+
264
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6317aade83d8d2fd903192d9/oi4CiGh50xmoviUQnh8R3.png)
265
+
266
+ # Chat Interfaces
267
+
268
+ When quantized versions of the model are released, I recommend using LM Studio for chatting with Hermes 2 Pro. It does not support function calling - for that use our github repo. It is a GUI application that utilizes GGUF models with a llama.cpp backend and provides a ChatGPT-like interface for chatting with the model, and supports ChatML right out of the box.
269
+ In LM-Studio, simply select the ChatML Prefix on the settings side pane:
270
+
271
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6317aade83d8d2fd903192d9/ls6WqV-GSxMw2RA3GuQiN.png)
272
+
273
+ ## Quantized Versions:
274
+
275
+ GGUF Versions Available Here: https://huggingface.co/NousResearch/Hermes-2-Theta-Llama-3-70B-GGUF
276
+
277
+ # How to cite:
278
+
279
+ ```bibtext
280
+ @misc{Hermes-2-Theta-Llama-3-70B,
281
+ url={[https://huggingface.co/NousResearch/Hermes-2-Theta-Llama-3-70B][NousResearch/Hermes-2-Theta-Llama-3-70B](https://huggingface.co/NousResearch/Hermes-2-Pro-Llama-3-70B))},
282
+ title={Hermes-2-Theta-Llama-3-70B},
283
+ author={"Teknium", Charles Goddard, "interstellarninja", "theemozilla", "karan4d", "huemin_art"}
284
+ }
285
+ ```