|
import numpy as np |
|
import torch |
|
|
|
|
|
def rigid_transform(xyz, transform): |
|
"""Applies a rigid transform (c2w) to an (N, 3) pointcloud. |
|
""" |
|
device = xyz.device |
|
xyz_h = torch.cat([xyz, torch.ones((len(xyz), 1)).to(device)], dim=1) |
|
xyz_t_h = (transform @ xyz_h.T).T |
|
|
|
return xyz_t_h[:, :3] |
|
|
|
|
|
def get_view_frustum(min_depth, max_depth, size, cam_intr, c2w): |
|
"""Get corners of 3D camera view frustum of depth image |
|
""" |
|
device = cam_intr.device |
|
im_h, im_w = size |
|
im_h = int(im_h) |
|
im_w = int(im_w) |
|
view_frust_pts = torch.stack([ |
|
(torch.tensor([0, 0, im_w, im_w, 0, 0, im_w, im_w]).to(device) - cam_intr[0, 2]) * torch.tensor( |
|
[min_depth, min_depth, min_depth, min_depth, max_depth, max_depth, max_depth, max_depth]).to(device) / |
|
cam_intr[0, 0], |
|
(torch.tensor([0, im_h, 0, im_h, 0, im_h, 0, im_h]).to(device) - cam_intr[1, 2]) * torch.tensor( |
|
[min_depth, min_depth, min_depth, min_depth, max_depth, max_depth, max_depth, max_depth]).to(device) / |
|
cam_intr[1, 1], |
|
torch.tensor([min_depth, min_depth, min_depth, min_depth, max_depth, max_depth, max_depth, max_depth]).to( |
|
device) |
|
]) |
|
view_frust_pts = view_frust_pts.type(torch.float32) |
|
c2w = c2w.type(torch.float32) |
|
view_frust_pts = rigid_transform(view_frust_pts.T, c2w).T |
|
return view_frust_pts |
|
|
|
|
|
def set_pixel_coords(h, w): |
|
i_range = torch.arange(0, h).view(1, h, 1).expand(1, h, w).type(torch.float32) |
|
j_range = torch.arange(0, w).view(1, 1, w).expand(1, h, w).type(torch.float32) |
|
ones = torch.ones(1, h, w).type(torch.float32) |
|
|
|
pixel_coords = torch.stack((j_range, i_range, ones), dim=1) |
|
|
|
return pixel_coords |
|
|
|
|
|
def get_boundingbox(img_hw, intrinsics, extrinsics, near_fars): |
|
""" |
|
# get the minimum bounding box of all visual hulls |
|
:param img_hw: |
|
:param intrinsics: |
|
:param extrinsics: |
|
:param near_fars: |
|
:return: |
|
""" |
|
|
|
bnds = torch.zeros((3, 2)) |
|
bnds[:, 0] = np.inf |
|
bnds[:, 1] = -np.inf |
|
|
|
if isinstance(intrinsics, list): |
|
num = len(intrinsics) |
|
else: |
|
num = intrinsics.shape[0] |
|
|
|
view_frust_pts_list = [] |
|
for i in range(num): |
|
if not isinstance(intrinsics[i], torch.Tensor): |
|
cam_intr = torch.tensor(intrinsics[i]) |
|
w2c = torch.tensor(extrinsics[i]) |
|
c2w = torch.inverse(w2c) |
|
else: |
|
cam_intr = intrinsics[i] |
|
w2c = extrinsics[i] |
|
c2w = torch.inverse(w2c) |
|
min_depth, max_depth = near_fars[i][0], near_fars[i][1] |
|
|
|
|
|
view_frust_pts = get_view_frustum(min_depth, max_depth, img_hw, cam_intr, c2w) |
|
bnds[:, 0] = torch.min(bnds[:, 0], torch.min(view_frust_pts, dim=1)[0]) |
|
bnds[:, 1] = torch.max(bnds[:, 1], torch.max(view_frust_pts, dim=1)[0]) |
|
view_frust_pts_list.append(view_frust_pts) |
|
all_view_frust_pts = torch.cat(view_frust_pts_list, dim=1) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
center = torch.tensor(((bnds[0, 1] + bnds[0, 0]) / 2, (bnds[1, 1] + bnds[1, 0]) / 2, |
|
(bnds[2, 1] + bnds[2, 0]) / 2)) |
|
|
|
lengths = bnds[:, 1] - bnds[:, 0] |
|
|
|
max_length, _ = torch.max(lengths, dim=0) |
|
radius = max_length / 2 |
|
|
|
|
|
return center, radius, bnds |
|
|