Text-to-3D
image-to-3d
Chao Xu
code pruning
216282e
import numpy as np
import torch
def rigid_transform(xyz, transform):
"""Applies a rigid transform (c2w) to an (N, 3) pointcloud.
"""
device = xyz.device
xyz_h = torch.cat([xyz, torch.ones((len(xyz), 1)).to(device)], dim=1) # (N, 4)
xyz_t_h = (transform @ xyz_h.T).T # * checked: the same with the below
return xyz_t_h[:, :3]
def get_view_frustum(min_depth, max_depth, size, cam_intr, c2w):
"""Get corners of 3D camera view frustum of depth image
"""
device = cam_intr.device
im_h, im_w = size
im_h = int(im_h)
im_w = int(im_w)
view_frust_pts = torch.stack([
(torch.tensor([0, 0, im_w, im_w, 0, 0, im_w, im_w]).to(device) - cam_intr[0, 2]) * torch.tensor(
[min_depth, min_depth, min_depth, min_depth, max_depth, max_depth, max_depth, max_depth]).to(device) /
cam_intr[0, 0],
(torch.tensor([0, im_h, 0, im_h, 0, im_h, 0, im_h]).to(device) - cam_intr[1, 2]) * torch.tensor(
[min_depth, min_depth, min_depth, min_depth, max_depth, max_depth, max_depth, max_depth]).to(device) /
cam_intr[1, 1],
torch.tensor([min_depth, min_depth, min_depth, min_depth, max_depth, max_depth, max_depth, max_depth]).to(
device)
])
view_frust_pts = view_frust_pts.type(torch.float32)
c2w = c2w.type(torch.float32)
view_frust_pts = rigid_transform(view_frust_pts.T, c2w).T
return view_frust_pts
def set_pixel_coords(h, w):
i_range = torch.arange(0, h).view(1, h, 1).expand(1, h, w).type(torch.float32) # [1, H, W]
j_range = torch.arange(0, w).view(1, 1, w).expand(1, h, w).type(torch.float32) # [1, H, W]
ones = torch.ones(1, h, w).type(torch.float32)
pixel_coords = torch.stack((j_range, i_range, ones), dim=1) # [1, 3, H, W]
return pixel_coords
def get_boundingbox(img_hw, intrinsics, extrinsics, near_fars):
"""
# get the minimum bounding box of all visual hulls
:param img_hw:
:param intrinsics:
:param extrinsics:
:param near_fars:
:return:
"""
bnds = torch.zeros((3, 2))
bnds[:, 0] = np.inf
bnds[:, 1] = -np.inf
if isinstance(intrinsics, list):
num = len(intrinsics)
else:
num = intrinsics.shape[0]
# print("num: ", num)
view_frust_pts_list = []
for i in range(num):
if not isinstance(intrinsics[i], torch.Tensor):
cam_intr = torch.tensor(intrinsics[i])
w2c = torch.tensor(extrinsics[i])
c2w = torch.inverse(w2c)
else:
cam_intr = intrinsics[i]
w2c = extrinsics[i]
c2w = torch.inverse(w2c)
min_depth, max_depth = near_fars[i][0], near_fars[i][1]
# todo: check the coresponding points are matched
view_frust_pts = get_view_frustum(min_depth, max_depth, img_hw, cam_intr, c2w)
bnds[:, 0] = torch.min(bnds[:, 0], torch.min(view_frust_pts, dim=1)[0])
bnds[:, 1] = torch.max(bnds[:, 1], torch.max(view_frust_pts, dim=1)[0])
view_frust_pts_list.append(view_frust_pts)
all_view_frust_pts = torch.cat(view_frust_pts_list, dim=1)
# print("all_view_frust_pts: ", all_view_frust_pts.shape)
# distance = torch.norm(all_view_frust_pts, dim=0)
# print("distance: ", distance)
# print("all_view_frust_pts_z: ", all_view_frust_pts[2, :])
center = torch.tensor(((bnds[0, 1] + bnds[0, 0]) / 2, (bnds[1, 1] + bnds[1, 0]) / 2,
(bnds[2, 1] + bnds[2, 0]) / 2))
lengths = bnds[:, 1] - bnds[:, 0]
max_length, _ = torch.max(lengths, dim=0)
radius = max_length / 2
# print("radius: ", radius)
return center, radius, bnds