lixinhao's picture
Update mm_utils.py
186e424 verified
from PIL import Image
from io import BytesIO
import base64
import math
import ast
import re
import torch
from transformers import StoppingCriteria
from .constants import IMAGE_TOKEN_INDEX
import random
import os
import io
import av
import cv2
import imageio
from decord import VideoReader
import numpy as np
from torchvision.transforms.functional import pil_to_tensor
######################## load video ########################
def get_index(num_frames, num_segments):
seg_size = float(num_frames - 1) / num_segments
start = int(seg_size / 2)
offsets = np.array([
start + int(np.round(seg_size * idx)) for idx in range(num_segments)
])
return offsets
def pts_to_secs(pts: int, time_base: float, start_pts: int) -> float:
"""
Converts a present time with the given time base and start_pts offset to seconds.
Returns:
time_in_seconds (float): The corresponding time in seconds.
https://github.com/facebookresearch/pytorchvideo/blob/main/pytorchvideo/data/utils.py#L54-L64
"""
if pts == math.inf:
return math.inf
return int(pts - start_pts) * time_base
def get_pyav_video_duration(video_reader):
video_stream = video_reader.streams.video[0]
video_duration = pts_to_secs(
video_stream.duration,
video_stream.time_base,
video_stream.start_time
)
return float(video_duration)
def get_frame_indices(num_frames, vlen, sample='middle', fix_start=None, input_fps=1, min_num_frames=1, max_num_frames=-1, local_num_frames=8):
if min_num_frames > vlen:
if sample == 'dynamic_fps1':
min_num_frames = (vlen // local_num_frames) * local_num_frames
else:
min_num_frames = vlen
if sample == 'dynamic_fps1':
duration = float(vlen) / input_fps
num_segments = int(duration // local_num_frames)
if num_segments == 0:
num_frames = local_num_frames
else:
num_frames = local_num_frames * num_segments
if max_num_frames > 0:
num_frames = min(num_frames, max_num_frames)
sample = "middle" # NOTE
# logger.info(f"? is OK (img), duation={duration} frames={num_frames}!!!!")
num_frames = max(min_num_frames, num_frames)
# print(f"\033[0;31m vlen={vlen}, input_fps={input_fps} num_frames={num_frames} \033[0m")
if sample in ["rand", "middle"]: # uniform sampling
acc_samples = min(num_frames, vlen)
# split the video into `acc_samples` intervals, and sample from each interval.
intervals = np.linspace(start=0, stop=vlen, num=acc_samples + 1).astype(int)
ranges = []
for idx, interv in enumerate(intervals[:-1]):
ranges.append((interv, intervals[idx + 1] - 1))
if sample == 'rand':
try:
frame_indices = [random.choice(range(x[0], x[1])) for x in ranges]
except:
frame_indices = np.random.permutation(vlen)[:acc_samples]
frame_indices.sort()
frame_indices = list(frame_indices)
elif fix_start is not None:
frame_indices = [x[0] + fix_start for x in ranges]
elif sample == 'middle':
frame_indices = [(x[0] + x[1]) // 2 for x in ranges]
else:
raise NotImplementedError
if len(frame_indices) < num_frames: # padded with last frame
padded_frame_indices = [frame_indices[-1]] * num_frames
padded_frame_indices[:len(frame_indices)] = frame_indices
frame_indices = padded_frame_indices
elif "fps" in sample: # fps0.5, sequentially sample frames at 0.5 fps
output_fps = float(sample[3:])
duration = float(vlen) / input_fps
delta = 1 / output_fps # gap between frames, this is also the clip length each frame represents
frame_seconds = np.arange(0 + delta / 2, duration + delta / 2, delta)
frame_indices = np.around(frame_seconds * input_fps).astype(int)
frame_indices = [e for e in frame_indices if e < vlen]
if max_num_frames > 0 and len(frame_indices) > max_num_frames:
frame_indices = frame_indices[:max_num_frames]
# frame_indices = np.linspace(0 + delta / 2, duration + delta / 2, endpoint=False, num=max_num_frames)
else:
raise ValueError(f"Not support sample type: {sample}")
return frame_indices
def read_frames_av(video_path, num_frames, sample='rand', client=None, fix_start=None, min_num_frames=1, max_num_frames=-1, clip=None, local_num_frames=8):
if clip is not None:
raise NotImplementedError("av don't support clip!!!")
if 's3://' in video_path:
video_bytes = client.get(video_path)
byteio = io.BytesIO(video_bytes)
byteio.seek(0)
reader = av.open(byteio)
else:
byteio = None
reader = av.open(video_path)
frames = [f.to_rgb().to_ndarray() for f in reader.decode(video=0)]
vlen = len(frames)
duration = get_pyav_video_duration(reader)
fps = vlen / float(duration)
frame_indices = get_frame_indices(
num_frames, vlen, sample=sample, fix_start=fix_start,
input_fps=fps, min_num_frames=min_num_frames, max_num_frames=max_num_frames, local_num_frames=local_num_frames
)
frames = np.stack([frames[idx] for idx in frame_indices]) # (T, H, W, C), torch.uint8
# frames = frames.permute(0, 3, 1, 2) # (T, C, H, W), torch.uint8
if byteio != None:
byteio.close()
reader.close()
return frames, frame_indices, float(fps), duration
def read_frames_gif(
video_path, num_frames, sample='rand', fix_start=None,
min_num_frames=1, max_num_frames=-1, client=None, clip=None, local_num_frames=8
):
if clip is not None:
raise NotImplementedError("Gif don't support clip!!!")
if 's3://' in video_path:
video_bytes = client.get(video_path)
byteio = io.BytesIO(video_bytes)
gif = imageio.get_reader(byteio)
else:
byteio = None
gif = imageio.get_reader(video_path)
vlen = len(gif)
fps = 1.
duration = vlen / fps
frame_indices = get_frame_indices(
num_frames, vlen, sample=sample, fix_start=fix_start,
min_num_frames=min_num_frames,
max_num_frames=max_num_frames, local_num_frames=local_num_frames,
input_fps=fps
)
frames = []
min_h = min_w = 100000
hw_set = set()
for index, frame in enumerate(gif):
# for index in frame_idxs:
if index in frame_indices:
frame = cv2.cvtColor(frame, cv2.COLOR_RGBA2RGB)
frame = frame.astype(np.uint8)
# # (H x W x C) to (C x H x W)
# frame = frame.permute(2, 0, 1)
frames.append(frame)
hw_set.add(frame.shape)
if frame.shape[0] < min_h:
min_h = frame.shape[0]
if frame.shape[1] < min_w:
min_w = frame.shape[1]
# print(hw_set, min_h, min_w)
if len(hw_set) > 1:
frames = [i[:min_h, :min_w] for i in frames]
frames = np.stack(frames) # .float() / 255
if byteio != None:
byteio.close()
return frames, frame_indices, float(fps), duration # for tgif
def read_frames_decord(
video_path, num_frames, sample='rand', fix_start=None, min_num_frames=1,
max_num_frames=-1, client=None, clip=None, local_num_frames=8
):
if video_path.endswith('.avi'):
return read_frames_av(video_path=video_path, num_frames=num_frames, sample=sample,
fix_start=fix_start, min_num_frames=min_num_frames, max_num_frames=max_num_frames,
client=client, clip=clip, local_num_frames=local_num_frames)
if 's3://' in video_path:
video_bytes = client.get(video_path)
if video_bytes is None or len(video_bytes) == 0:
raise ValueError(f"Can't read byte from {video_path}!")
byteio = io.BytesIO(video_bytes)
video_reader = VideoReader(byteio, num_threads=1)
else:
byteio = None
video_reader = VideoReader(video_path, num_threads=1)
vlen = len(video_reader)
fps = video_reader.get_avg_fps()
duration = vlen / float(fps)
if clip:
start, end = clip
start = max(0, start)
end = min(duration - 0.1, end)
duration = end - start
vlen = int(duration * fps)
start_index = int(start * fps)
frame_indices = get_frame_indices(
num_frames, vlen, sample=sample, fix_start=fix_start,
input_fps=fps, min_num_frames=min_num_frames, max_num_frames=max_num_frames, local_num_frames=local_num_frames
)
if clip:
frame_indices = [f + start_index for f in frame_indices]
# print(fps, frame_indices)
frames = video_reader.get_batch(frame_indices).asnumpy() # (T, H, W, C), torch.uint8
# https://github.com/dmlc/decord/issues/208
video_reader.seek(0)
if byteio != None:
byteio.close()
# frames = frames.permute(0, 3, 1, 2) # (T, C, H, W), torch.uint8
return frames, frame_indices, float(fps), duration
def read_frames_img(
video_path, num_frames, sample='rand', fix_start=None, min_num_frames=1,
max_num_frames=-1, client=None, clip=None, local_num_frames=8
):
def extract_frame_number(filename):
# Extract the numeric part from the filename using regular expressions
if filename.endswith('.jpg'):
match = re.search(r'_(\d+).jpg$', filename)
elif filename.endswith('.jpeg'):
match = re.search(r'_(\d+).jpeg$', filename)
elif filename.endswith('.png'):
match = re.search(r'_(\d+).png$', filename)
else:
raise NotImplementedError(f"Wrong filename: {filename}")
return int(match.group(1)) if match else -1
def sort_frames(frame_paths):
# Extract filenames from each path and sort by their numeric part
return sorted(frame_paths, key=lambda x: extract_frame_number(os.path.basename(x)))
# img_list=[]
if "s3://" in video_path:
img_list = sort_frames(client.list(video_path))
else:
img_list = sort_frames(list(os.listdir(video_path)))
if 'tvqa' in video_path.lower():
fps = 3.0
else:
fps = 1.0
if clip is not None:
start = float(clip[0])
end = float(clip[1])
start = max(0, start)
end = min(len(img_list) / fps, end)
vlen = (end - start) * fps
else:
vlen = len(img_list)
duration = vlen / fps
if min_num_frames > vlen:
if sample == 'dynamic_fps1':
min_num_frames = (vlen // local_num_frames) * local_num_frames
else:
min_num_frames = vlen
if sample == 'dynamic_fps1':
num_segments = int(duration // local_num_frames)
if num_segments == 0:
num_frames = local_num_frames
else:
num_frames = local_num_frames * num_segments
num_frames = min(num_frames, max_num_frames)
num_frames = max(min_num_frames, num_frames)
num_frames = int(num_frames)
if clip is not None:
def _get_index_by_time(start_sec, end_sec, num_segments=8, fps=1., max_frame=9999):
start_idx = max(1, round(start_sec * fps))
end_idx = min(round(end_sec * fps), max_frame)
seg_size = float(end_idx - start_idx) / (num_segments - 1)
offsets = np.array([start_idx + int(np.round(seg_size * idx)) for idx in range(num_segments)])
return offsets
frame_indices = _get_index_by_time(float(clip[0]), float(clip[1]), num_segments=num_frames, fps=fps, max_frame=len(img_list)-1)
else:
frame_indices = get_frame_indices(
num_frames, vlen, sample=sample, fix_start=fix_start,
min_num_frames=min_num_frames,
max_num_frames=max_num_frames, local_num_frames=local_num_frames
)
imgs = []
for idx in frame_indices:
frame_fname = os.path.join(video_path, img_list[idx])
if "s3://" in video_path:
img_bytes = client.get(frame_fname)
else:
with open(frame_fname, 'rb') as f:
img_bytes = f.read()
img_np = np.frombuffer(img_bytes, np.uint8)
img = cv2.imdecode(img_np, cv2.IMREAD_COLOR)
cv2.cvtColor(img, cv2.COLOR_BGR2RGB, img)
imgs.append(img)
frames = np.array(imgs, dtype=np.uint8)
return frames, frame_indices, fps, duration
VIDEO_READER_FUNCS = {
'av': read_frames_av,
'decord': read_frames_decord,
'gif': read_frames_gif,
'img': read_frames_img,
'frame': read_frames_img
}
def load_video(video_path, max_num_frames=512, media_dict=None): #, media_dict):
if media_dict is None:
media_dict = {'video_read_type': 'decord'}
if type(video_path) != str:
assert len(video_path) == 1, video_path
video_path = video_path[0]
if 'start' in media_dict:
clip = [media_dict['start'], media_dict['end']]
else:
clip = None
client = None
frames, frame_indices, fps, duration = VIDEO_READER_FUNCS[media_dict['video_read_type']](video_path=video_path, num_frames=max_num_frames, sample='dynamic_fps1', fix_start=None, min_num_frames=64, max_num_frames=max_num_frames, client=client, clip=clip, local_num_frames=8)
sec = [str(round(f / fps, 1)) for f in frame_indices]
msg = f"\nThe video lasts for {duration:.2f} seconds, and {len(sec)} frames are uniformly sampled from it. "
return frames, msg
######################## load video ########################
def resize_and_center_crop(image, shortest_edge_length):
# Calculate new dimensions and resize
aspect_ratio = float(image.width) / float(image.height)
if aspect_ratio > 1:
new_width = int(shortest_edge_length * aspect_ratio)
new_height = shortest_edge_length
else:
new_width = shortest_edge_length
new_height = int(shortest_edge_length / aspect_ratio)
resized_image = image.resize((new_width, new_height), Image.ANTIALIAS)
# Calculate the position and perform the center crop
left = (new_width - shortest_edge_length) / 2
top = (new_height - shortest_edge_length) / 2
right = (new_width + shortest_edge_length) / 2
bottom = (new_height + shortest_edge_length) / 2
cropped_image = resized_image.crop((left, top, right, bottom))
return cropped_image
def auto_pad_images(image, grid_params):
assert isinstance(image, Image.Image), "Input should be a Pillow Image"
assert len(grid_params) > 0, "Grid parameters should not be empty"
# Step 1: Calculate and find the closest aspect ratio
input_width, input_height = image.size
input_aspect_ratio = input_width / input_height
candidate_resolutions = [(w / h, w, h) for w in grid_params for h in grid_params]
closest_aspect_ratio = min(candidate_resolutions, key=lambda x: abs(input_aspect_ratio - x[0]))
candidate_resolutions = [(x[1], x[2]) for x in candidate_resolutions if abs(x[0] - closest_aspect_ratio[0]) < 1e-3]
target_resolution = min(candidate_resolutions, key=lambda res: abs(max(input_width, input_height) / max(res) - 1))
resize_width, resize_height = target_resolution
if input_width > input_height:
resize_height = int(resize_width / input_aspect_ratio)
else:
resize_width = int(resize_height * input_aspect_ratio)
resized_image = image.resize((resize_width, resize_height), Image.ANTIALIAS)
# Step 5: Pad the resized image if necessary to match the target resolution
pad_width = target_resolution[0] - resize_width
pad_height = target_resolution[1] - resize_height
padded_image = Image.new("RGB", target_resolution, color=(0, 0, 0))
padded_image.paste(resized_image, (pad_width // 2, pad_height // 2))
return padded_image
def extract_patches(image, patch_size, overlap_ratio):
assert isinstance(image, Image.Image), "Input should be a Pillow Image"
assert patch_size > 0, "Patch size should be greater than 0"
assert 0 <= overlap_ratio < 1, "Overlap ratio should be between 0 and 1"
W, H = image.size
patches = []
stride = int(patch_size * (1 - overlap_ratio))
num_patches_y = (H - patch_size) // stride + 1
num_patches_x = (W - patch_size) // stride + 1
y_start = (H - (num_patches_y - 1) * stride - patch_size) // 2
x_start = (W - (num_patches_x - 1) * stride - patch_size) // 2
for y in range(y_start, y_start + num_patches_y * stride, stride):
for x in range(x_start, x_start + num_patches_x * stride, stride):
patch = image.crop((x, y, x + patch_size, y + patch_size))
patches.append(patch)
return patches
def process_highres_image_crop_split(image, data_args, processor=None):
crop_resolution = data_args.image_crop_resolution
split_resolution = data_args.image_split_resolution
if processor is None:
processor = data_args.image_processor
image_crop = resize_and_center_crop(image, crop_resolution)
image_patches = extract_patches(image_crop, patch_size=split_resolution, overlap_ratio=0)
image_patches = [processor.preprocess(image_patch, return_tensors="pt")["pixel_values"][0] for image_patch in image_patches]
return torch.stack(image_patches, dim=0)
def process_highres_image(image, processor, grid_pinpoints):
grid_params = [int(x) for x in grid_pinpoints.split(",")]
width_height = max(image.size)
fit_grid_params = [x for x in grid_params if x >= width_height]
if len(fit_grid_params) == 0:
select_size = max(grid_params)
else:
select_size = min(fit_grid_params)
# FIXME: always select the 448
select_size = max(grid_params)
image_padded = expand2square(image, tuple(int(x * 255) for x in processor.image_mean))
# FIXME: this seems to be a bug that it always resizes instead of padding
image_original_resize = image.resize((processor.size["shortest_edge"], processor.size["shortest_edge"]))
image_padded = image_padded.resize((select_size, select_size))
image_patches = extract_patches(image_padded, patch_size=processor.size["shortest_edge"], overlap_ratio=0)
image_patches = [image_original_resize] + image_patches
image_patches = [processor.preprocess(image_patch, return_tensors="pt")["pixel_values"][0] for image_patch in image_patches]
return torch.stack(image_patches, dim=0)
def select_best_resolution(original_size, possible_resolutions, max_resolutions, patch_size):
"""
Selects the best resolution from a list of possible resolutions based on the original size.
Args:
original_size (tuple): The original size of the image in the format (width, height).
possible_resolutions (list): A list of possible resolutions in the format [(width1, height1), (width2, height2), ...].
Returns:
tuple: The best fit resolution in the format (width, height).
"""
original_width, original_height = original_size
best_fit = None
max_effective_resolution = 0
min_wasted_resolution = float("inf")
for width, height in possible_resolutions:
if max_resolutions != None and (width * height != patch_size * patch_size):
if (width * height+patch_size*patch_size) > max_resolutions: # NOTE 要算一个global
continue
# Calculate the downscaled size to keep the aspect ratio
scale = min(width / original_width, height / original_height)
downscaled_width, downscaled_height = int(original_width * scale), int(original_height * scale)
# Calculate effective and wasted resolutions
effective_resolution = min(downscaled_width * downscaled_height, original_width * original_height)
wasted_resolution = (width * height) - effective_resolution
if effective_resolution > max_effective_resolution or (effective_resolution == max_effective_resolution and wasted_resolution < min_wasted_resolution):
max_effective_resolution = effective_resolution
min_wasted_resolution = wasted_resolution
best_fit = (width, height)
# print(f"original_size={original_size}, possible_resolutions={possible_resolutions}, max_resolutions={max_resolutions}, best_fit={best_fit}")
assert best_fit is not None, f"Can't find suitable fit in {possible_resolutions} at max:{max_resolutions}"
return best_fit
def resize_and_pad_image(image, target_resolution):
"""
Resize and pad an image to a target resolution while maintaining aspect ratio.
Args:
image (PIL.Image.Image): The input image.
target_resolution (tuple): The target resolution (width, height) of the image.
Returns:
PIL.Image.Image: The resized and padded image.
"""
original_width, original_height = image.size
target_width, target_height = target_resolution
# Determine which dimension (width or height) to fill
scale_w = target_width / original_width
scale_h = target_height / original_height
if scale_w < scale_h:
# Width will be filled completely
new_width = target_width
new_height = min(math.ceil(original_height * scale_w), target_height)
else:
# Height will be filled completely
new_height = target_height
new_width = min(math.ceil(original_width * scale_h), target_width)
# Resize the image
resized_image = image.resize((new_width, new_height))
# Create a new image with the target size and paste the resized image onto it
new_image = Image.new("RGB", (target_width, target_height), (0, 0, 0))
paste_x = (target_width - new_width) // 2
paste_y = (target_height - new_height) // 2
new_image.paste(resized_image, (paste_x, paste_y))
return new_image
def divide_to_patches(image, patch_size):
"""
Divides an image into patches of a specified size.
Args:
image (PIL.Image.Image): The input image.
patch_size (int): The size of each patch.
Returns:
list: A list of PIL.Image.Image objects representing the patches.
"""
patches = []
width, height = image.size
for i in range(0, height, patch_size):
for j in range(0, width, patch_size):
box = (j, i, j + patch_size, i + patch_size)
patch = image.crop(box)
patches.append(patch)
return patches
def get_anyres_image_grid_shape(image_size, grid_pinpoints, patch_size, max_resolutions=None):
"""
Calculate the shape of the image patch grid after the preprocessing for images of any resolution.
Args:
image_size (tuple): The size of the input image in the format (width, height).
grid_pinpoints (str): A string representation of a list of possible resolutions.
patch_size (int): The size of each image patch.
Returns:
tuple: The shape of the image patch grid in the format (width, height).
"""
if isinstance(grid_pinpoints, str) and "x" in grid_pinpoints:
assert patch_size in [224, 336, 384, 448, 512], "patch_size should be in [224, 336, 384, 448, 512]"
# Use regex to extract the range from the input string
matches = re.findall(r"\((\d+)x(\d+)\)", grid_pinpoints)
range_start = tuple(map(int, matches[0]))
range_end = tuple(map(int, matches[-1]))
# Generate a matrix of tuples from (range_start[0], range_start[1]) to (range_end[0], range_end[1])
grid_pinpoints = [(i, j) for i in range(range_start[0], range_end[0] + 1) for j in range(range_start[1], range_end[1] + 1)]
# Multiply all elements by patch_size
grid_pinpoints = [[dim * patch_size for dim in pair] for pair in grid_pinpoints]
if type(grid_pinpoints) is list:
possible_resolutions = grid_pinpoints
else:
possible_resolutions = ast.literal_eval(grid_pinpoints)
width, height = select_best_resolution(image_size, possible_resolutions, max_resolutions=max_resolutions, patch_size=patch_size)
# print("get width/patch size", width, patch_size, flush=True)
return width // patch_size, height // patch_size
def process_anyres_image(image, processor, grid_pinpoints):
"""
Process an image with variable resolutions.
Args:
image (PIL.Image.Image): The input image to be processed.
processor: The image processor object.
grid_pinpoints (str): A string representation of a list of possible resolutions.
Returns:
torch.Tensor: A tensor containing the processed image patches.
"""
raise NotImplementedError
# Convert grid_pinpoints from string to list
if isinstance(grid_pinpoints, str) and "x" in grid_pinpoints:
try:
patch_size = processor.size[0]
except Exception as e:
patch_size = processor.size["shortest_edge"]
assert patch_size in [224, 336, 384, 448, 512], "patch_size should be in [224, 336, 384, 448, 512]"
# Use regex to extract the range from the input string
matches = re.findall(r"\((\d+)x(\d+)\)", grid_pinpoints)
range_start = tuple(map(int, matches[0]))
range_end = tuple(map(int, matches[-1]))
# Generate a matrix of tuples from (range_start[0], range_start[1]) to (range_end[0], range_end[1])
grid_pinpoints = [(i, j) for i in range(range_start[0], range_end[0] + 1) for j in range(range_start[1], range_end[1] + 1)]
# Multiply all elements by patch_size
grid_pinpoints = [[dim * patch_size for dim in pair] for pair in grid_pinpoints]
if type(grid_pinpoints) is list:
possible_resolutions = grid_pinpoints
else:
possible_resolutions = ast.literal_eval(grid_pinpoints)
best_resolution = select_best_resolution(image.size, possible_resolutions)
image_padded = resize_and_pad_image(image, best_resolution)
patches = divide_to_patches(image_padded, processor.crop_size["height"])
# FIXME: this seems to be a bug that it resizes instead of pad.
# but to keep it consistent with previous, i will keep it as it is
# TODO: uncomment below to ablate with the padding
if isinstance(processor.size, dict):
shortest_edge = processor.size["shortest_edge"]
else:
shortest_edge = min(processor.size)
image_original_resize = image.resize((shortest_edge, shortest_edge))
# image_padded_square = expand2square(image, tuple(int(x*255) for x in processor.image_mean))
# image_original_resize = image_padded_square.resize((processor.size['shortest_edge'], processor.size['shortest_edge']))
image_patches = [image_original_resize] + patches
image_patches = [processor.preprocess(image_patch, return_tensors="pt")["pixel_values"][0] for image_patch in image_patches]
# print("image.size", image.size, "len(image_patches):", len(image_patches), "patch_size:", image_patches[0].shape)
return torch.stack(image_patches, dim=0)
def process_anyres_image_nopad(image, processor, grid_pinpoints):
"""
Process an image with variable resolutions.
Args:
image (PIL.Image.Image): The input image to be processed.
processor: The image processor object.
grid_pinpoints (str): A string representation of a list of possible resolutions.
Returns:
torch.Tensor: A tensor containing the processed image patches.
"""
# Convert grid_pinpoints from string to list
try:
patch_size = processor.size[0]
except Exception as e:
patch_size = processor.size["shortest_edge"]
assert patch_size in [224, 336, 384, 448, 512], "patch_size should be in [224, 336, 384, 448, 512]"
if isinstance(grid_pinpoints, str) and "x" in grid_pinpoints:
# Use regex to extract the range from the input string
matches = re.findall(r"\((\d+)x(\d+)\)", grid_pinpoints)
range_start = tuple(map(int, matches[0]))
range_end = tuple(map(int, matches[-1]))
# Generate a matrix of tuples from (range_start[0], range_start[1]) to (range_end[0], range_end[1])
grid_pinpoints = [(i, j) for i in range(range_start[0], range_end[0] + 1) for j in range(range_start[1], range_end[1] + 1)]
# Multiply all elements by patch_size
grid_pinpoints = [[dim * patch_size for dim in pair] for pair in grid_pinpoints]
if type(grid_pinpoints) is list:
possible_resolutions = grid_pinpoints
else:
possible_resolutions = ast.literal_eval(grid_pinpoints)
best_resolution = select_best_resolution(image.size, possible_resolutions, max_resolutions=None, patch_size=patch_size) # 目前图像无限制
# image_padded = resize_and_pad_image(image, best_resolution)
patches = divide_to_patches(image.resize(best_resolution), patch_size)
# FIXME: this seems to be a bug that it resizes instead of pad.
# but to keep it consistent with previous, i will keep it as it is
# TODO: uncomment below to ablate with the padding
if isinstance(processor.size, dict):
shortest_edge = processor.size["shortest_edge"]
else:
shortest_edge = min(processor.size)
image_original_resize = image.resize((shortest_edge, shortest_edge))
# image_padded_square = expand2square(image, tuple(int(x*255) for x in processor.image_mean))
# image_original_resize = image_padded_square.resize((processor.size['shortest_edge'], processor.size['shortest_edge']))
image_patches = [image_original_resize] + patches
image_patches = [processor.preprocess(image_patch, return_tensors="pt")["pixel_values"][0] for image_patch in image_patches]
# raise ValueError(f"image.size: {image.size} len(image_patches): {len(image_patches)}, patch_size:, {image_patches[0].shape}, possible_resolutions:, {possible_resolutions}, best: {best_resolution}")
return torch.stack(image_patches, dim=0)
def load_image_from_base64(image):
return Image.open(BytesIO(base64.b64decode(image)))
def expand2square(pil_img, background_color):
width, height = pil_img.size
if width == height:
return pil_img
elif width > height:
result = Image.new(pil_img.mode, (width, width), background_color)
result.paste(pil_img, (0, (width - height) // 2))
return result
else:
result = Image.new(pil_img.mode, (height, height), background_color)
result.paste(pil_img, ((height - width) // 2, 0))
return result
def process_images(images, image_processor, model_cfg):
image_aspect_ratio = getattr(model_cfg, "image_aspect_ratio", None)
new_images = []
if image_aspect_ratio == "highres":
raise NotImplementedError
for image in images:
image = process_highres_image(image, image_processor, model_cfg.image_grid_pinpoints)
new_images.append(image)
elif "anyres" in image_aspect_ratio:
for image in images:
if "nopad" in image_aspect_ratio:
image = process_anyres_image_nopad(image, image_processor, model_cfg.image_grid_pinpoints)
else:
image = process_anyres_image(image, image_processor, model_cfg.image_grid_pinpoints)
new_images.append(image)
elif image_aspect_ratio == "crop_split":
raise NotImplementedError
for image in images:
image = process_highres_image_crop_split(image, model_cfg, image_processor)
new_images.append(image)
elif image_aspect_ratio == "pad":
for image in images:
image = expand2square(image, tuple(int(x * 255) for x in image_processor.image_mean))
image = image_processor.preprocess(image, return_tensors="pt")["pixel_values"][0]
new_images.append(image)
else:
return image_processor.preprocess(images, return_tensors="pt")["pixel_values"]
if all(x.shape == new_images[0].shape for x in new_images):
new_images = torch.stack(new_images, dim=0)
return new_images
def tokenizer_image_token(prompt, tokenizer, image_token_index=IMAGE_TOKEN_INDEX, return_tensors=None):
prompt_chunks = [tokenizer(chunk).input_ids for chunk in prompt.split("<image>")]
def insert_separator(X, sep):
return [ele for sublist in zip(X, [sep] * len(X)) for ele in sublist][:-1]
input_ids = []
offset = 0
if len(prompt_chunks) > 0 and len(prompt_chunks[0]) > 0 and prompt_chunks[0][0] == tokenizer.bos_token_id:
offset = 1
input_ids.append(prompt_chunks[0][0])
for x in insert_separator(prompt_chunks, [image_token_index] * (offset + 1)):
input_ids.extend(x[offset:])
if return_tensors is not None:
if return_tensors == "pt":
return torch.tensor(input_ids, dtype=torch.long)
raise ValueError(f"Unsupported tensor type: {return_tensors}")
return input_ids
def get_model_name_from_path(model_path):
model_path = model_path.strip("/")
model_paths = model_path.split("/")
if model_paths[-1].startswith("checkpoint-"):
return model_paths[-2] + "_" + model_paths[-1]
else:
return model_paths[-1]
class KeywordsStoppingCriteria(StoppingCriteria):
def __init__(self, keywords, tokenizer, input_ids):
self.keywords = keywords
self.keyword_ids = []
for keyword in keywords:
cur_keyword_ids = tokenizer(keyword).input_ids
if len(cur_keyword_ids) > 1 and cur_keyword_ids[0] == tokenizer.bos_token_id:
cur_keyword_ids = cur_keyword_ids[1:]
self.keyword_ids.append(torch.tensor(cur_keyword_ids))
self.tokenizer = tokenizer
self.start_len = input_ids.shape[1]
def __call__(self, output_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
assert output_ids.shape[0] == 1, "Only support batch size 1 (yet)" # TODO
offset = min(output_ids.shape[1] - self.start_len, 3)
self.keyword_ids = [keyword_id.to(output_ids.device) for keyword_id in self.keyword_ids]
for keyword_id in self.keyword_ids:
if output_ids[0, -keyword_id.shape[0] :] == keyword_id:
return True
outputs = self.tokenizer.batch_decode(output_ids[:, -offset:], skip_special_tokens=True)[0]
for keyword in self.keywords:
if keyword in outputs:
return True
return False