|
import io |
|
import logging |
|
import torch |
|
import torch.utils.checkpoint |
|
from torch import nn |
|
from torch.nn import MSELoss |
|
from transformers.modeling_outputs import ( |
|
CausalLMOutputWithPast, |
|
) |
|
from typing import List, Optional, Tuple, Union |
|
from transformers import LlamaForCausalLM |
|
|
|
from torch.cuda.amp import autocast as autocast |
|
|
|
from .modeling_vit import build_vit |
|
from .modeling_qformer import build_qformer |
|
from .model_config import VideoChatEConfig |
|
logger = logging.getLogger(__name__) |
|
|
|
from transformers import LlamaTokenizer,AutoTokenizer,AutoModel,AutoModelForCausalLM,AutoProcessor |
|
from transformers import AutoConfig, PreTrainedModel |
|
|
|
import os |
|
import sys |
|
|
|
|
|
try: |
|
from third_party.sam2.build_sam import build_sam2_video_predictor |
|
from third_party.cgdetr.cg_detr.model import build_cgdetr_model |
|
except: |
|
print("can not import sam2 and cg-detr, install them first.") |
|
|
|
DEFAULT_IMG_TOKEN = "[IMG]" |
|
DEFAULT_IMG_END_TOKEN = "[/IMG]" |
|
|
|
DEFAULT_IMAGE_TOKEN = "<image>" |
|
DEFAULT_VIDEO_TOKEN = "[VIDEO]" |
|
|
|
IMG_TOKEN = "[<IMG_PLH>]" |
|
VID_TOKEN = "[<VID_PLH>]" |
|
|
|
BOX_START = '<box_begin>' |
|
|
|
ATBOXES_PLACEHOLDER = '<box_begin><boxes>' |
|
|
|
BOXES_PLACEHOLDER = '<boxes>' |
|
EXPR_PLACEHOLDER = '<expr>' |
|
QUESTION_PLACEHOLDER = '<question>' |
|
TIME_START = '<time_begin>' |
|
|
|
TIME_PLACEHOLDER = '<temp>' |
|
ATTEMP_PLACEHOLDER = TIME_START + TIME_PLACEHOLDER |
|
|
|
TRACK_START='<track_begin>' |
|
TRACK_PLACEHOLDER = '<tracking>' |
|
TRACK_START_BOX = '<track_box>' |
|
ATTRACK_PLACEHOLDER = TRACK_START + TRACK_PLACEHOLDER |
|
need_template_list = ['REC', 'flickr', 'tracking', 'tracking2', 'tracking3', 'tracking4'] |
|
|
|
load_image_list = ['image', 'REC', 'flickr'] |
|
load_video_list = ['video', 'TVG', 'tracking', 'tracking2','tracking3', 'tracking4', 'TVG+HL'] |
|
special_tokens = [BOX_START, TIME_START, TIME_PLACEHOLDER, BOXES_PLACEHOLDER, TRACK_START, TRACK_PLACEHOLDER, TRACK_START_BOX] |
|
|
|
def disabled_train(self, mode=True): |
|
"""Overwrite model.train with this function to make sure train/eval mode |
|
does not change anymore.""" |
|
return self |
|
|
|
|
|
def freeze_module(module): |
|
for _, param in module.named_parameters(): |
|
param.requires_grad = False |
|
module = module.eval() |
|
module.train = disabled_train |
|
return module |
|
|
|
|
|
class LLMConfig(AutoConfig): |
|
model_type = "20b" |
|
|
|
|
|
class BaseMLLM(PreTrainedModel): |
|
config_class = VideoChatEConfig |
|
def __init__(self, config,_tokenizer=None): |
|
|
|
self.model_config = config.model_config |
|
self.tokenizer = _tokenizer |
|
|
|
config.cg_opt = None |
|
config.model_config = None |
|
config.model_tokenizer = None |
|
super().__init__(config) |
|
self.build_vision_encoder() |
|
self.build_llm() |
|
self.build_bridge() |
|
self.build_loss() |
|
|
|
self.load_pretrained_weights() |
|
try: |
|
if config.build_decoder: |
|
self.cg_opt = config.cg_opt |
|
self.build_bbox_decoder() |
|
self.build_sam() |
|
self.build_CGDETR() |
|
except: |
|
print("please install cgdetr and sam2 first") |
|
logger.info(f'Length of tokenizer and resize embedding: {len(self.tokenizer)}') |
|
|
|
|
|
def build_vision_encoder(self): |
|
if 'internvideo2' in self.model_config.vision_encoder.name.lower(): |
|
encoder_name = self.model_config.vision_encoder.name |
|
logger.info(f"Build vision_encoder: {encoder_name}") |
|
if encoder_name == 'internvideo2-1B': |
|
self.vision_encoder = pretrain_internvideo2_giant_patch14_224_clean(self.model_config) |
|
|
|
else: |
|
raise ValueError(f"Not implemented: {encoder_name}") |
|
elif 'vit' in self.model_config.vision_encoder.name.lower(): |
|
self.vision_encoder = build_vit(self.model_config) |
|
else: |
|
raise NotImplementedError(self.model_config.vision_encoder.name) |
|
|
|
if self.model_config.vision_encoder.vit_add_ln: |
|
self.vision_layernorm = nn.LayerNorm(self.model_config.vision_encoder.encoder_embed_dim, eps=1e-12) |
|
else: |
|
self.vision_layernorm = nn.Identity() |
|
|
|
self.freeze_vision_encoder = self.model_config.get("freeze_vision_encoder", False) |
|
|
|
if self.freeze_vision_encoder: |
|
logger.info("freeze vision encoder") |
|
freeze_module(self.vision_encoder) |
|
freeze_module(self.vision_layernorm) |
|
|
|
def build_CGDETR(self): |
|
self.cg_model, self.cg_criterion = build_cgdetr_model() |
|
|
|
def build_bridge(self): |
|
|
|
self.project_up = nn.Linear(768, self.lm.config.hidden_size) |
|
|
|
self.project_down = nn.Linear(self.lm.config.hidden_size, 768) |
|
|
|
if 'qformer' in self.model_config.bridge.name.lower(): |
|
from transformers import BertTokenizer |
|
self.qformer_tokenizer = BertTokenizer.from_pretrained("bert-base-uncased", truncation_side="left") |
|
self.qformer_tokenizer.add_special_tokens({"bos_token": "[DEC]"}) |
|
self.qformer_tokenizer.padding_side = "left" |
|
if self.model_config.bridge.name == 'qformer': |
|
self.qformer, self.query_tokens = build_qformer( |
|
self.model_config.bridge.num_query_token, self.model_config.vision_encoder.encoder_embed_dim, |
|
qformer_hidden_dropout_prob=self.model_config.bridge.qformer_hidden_dropout_prob, |
|
qformer_attention_probs_dropout_prob=self.model_config.bridge.qformer_attention_probs_dropout_prob, |
|
qformer_drop_path_rate=self.model_config.bridge.qformer_drop_path_rate, |
|
) |
|
elif self.model_config.bridge.name == 'causal_qformer': |
|
self.qformer, self.query_tokens = build_causal_qformer( |
|
self.model_config.bridge.num_query_token, self.model_config.vision_encoder.encoder_embed_dim, |
|
qformer_hidden_dropout_prob=self.model_config.bridge.qformer_hidden_dropout_prob, |
|
qformer_attention_probs_dropout_prob=self.model_config.bridge.qformer_attention_probs_dropout_prob |
|
) |
|
self.qformer.resize_token_embeddings(len(self.qformer_tokenizer)) |
|
self.qformer.cls = None |
|
self.extra_num_query_token = self.model_config.bridge.extra_num_query_token |
|
if self.model_config.bridge.extra_num_query_token > 0: |
|
logger.info(f"Add extra {self.model_config.bridge.extra_num_query_token} tokens in QFormer") |
|
self.extra_query_tokens = nn.Parameter( |
|
torch.zeros(1, self.model_config.bridge.extra_num_query_token, self.query_tokens.shape[-1]) |
|
) |
|
|
|
self.freeze_bridge = self.model_config.get("freeze_bridge", False) |
|
if self.freeze_bridge: |
|
logger.info("freeze bridge") |
|
freeze_module(self.qformer) |
|
self.query_tokens.requires_grad = False |
|
|
|
def build_llm(self): |
|
self.lm_name = self.model_config.llm.name |
|
if self.model_config.llm.name == "vicuna1.5_7b": |
|
self.lm = LlamaForCausalLM.from_pretrained(self.model_config.llm.pretrained_llm_path) |
|
self.lm.gradient_checkpointing = self.model_config.llm.get("use_llama_gradient_checkpointing", True) |
|
elif self.model_config.llm.name == 'mistral_7b': |
|
from transformers import AutoModelForCausalLM |
|
|
|
config = AutoConfig.from_pretrained( |
|
self.model_config.llm.pretrained_llm_path, |
|
torch_dtype=torch.bfloat16, |
|
|
|
) |
|
self.lm = AutoModelForCausalLM.from_config(config) |
|
elif self.model_config.llm.name == 'internlm_20b': |
|
from transformers import AutoModelForCausalLM |
|
self.lm = AutoModelForCausalLM.from_pretrained( |
|
self.model_config.llm.pretrained_llm_path, |
|
torch_dtype=torch.bfloat16, |
|
trust_remote_code=True, |
|
) |
|
self.lm.gradient_checkpointing = True |
|
self.lm._set_gradient_checkpointing() |
|
else: |
|
raise NotImplementedError(self.model_config.llm.name) |
|
|
|
num_new_tokens = len(special_tokens) |
|
self.lm.resize_token_embeddings(len(self.tokenizer)) |
|
|
|
input_embeddings = self.lm.get_input_embeddings().weight.data |
|
output_embeddings = self.lm.get_output_embeddings().weight.data |
|
|
|
input_embeddings_avg = input_embeddings[:-num_new_tokens].mean( |
|
dim=0, keepdim=True) |
|
output_embeddings_avg = output_embeddings[:-num_new_tokens].mean( |
|
dim=0, keepdim=True) |
|
|
|
input_embeddings[-num_new_tokens:] = input_embeddings_avg |
|
output_embeddings[-num_new_tokens:] = output_embeddings_avg |
|
|
|
self.model_config.token_at_ids = self.tokenizer.convert_tokens_to_ids([BOX_START])[0] |
|
self.freeze_llm = self.model_config.get("freeze_llm", True) |
|
logger.info(f'freeze_llm: {self.freeze_llm}') |
|
if self.freeze_llm: |
|
logger.info("freeze llm") |
|
freeze_module(self.lm) |
|
|
|
if self.model_config.llm.use_lora: |
|
self.use_lora = True |
|
from peft import get_peft_model, LoraConfig, TaskType |
|
logger.info("Use lora") |
|
if self.model_config.llm.name == 'internlm_20b': |
|
peft_config = LoraConfig( |
|
task_type=TaskType.CAUSAL_LM, inference_mode=False, |
|
r=self.model_config.llm.lora_r, lora_alpha=self.model_config.llm.lora_alpha, lora_dropout=self.model_config.llm.lora_dropout, |
|
target_modules=['wqkv', 'wo', 'w1', 'w2', 'w3', 'output'] |
|
) |
|
else: |
|
peft_config = LoraConfig( |
|
task_type=TaskType.CAUSAL_LM, inference_mode=False, |
|
r=self.model_config.llm.lora_r, lora_alpha=self.model_config.llm.lora_alpha, lora_dropout=self.model_config.llm.lora_dropout, |
|
target_modules=["q_proj", "k_proj", "v_proj", "o_proj", |
|
"gate_proj", "up_proj", "down_proj", "lm_head"] |
|
) |
|
|
|
self.lm = get_peft_model(self.lm, peft_config) |
|
self.lm.enable_input_require_grads() |
|
self.lm.print_trainable_parameters() |
|
|
|
if self.model_config.get("freeze_lora", False): |
|
logger.info("freeze lora") |
|
freeze_module(self.lm) |
|
self.lm.print_trainable_parameters() |
|
|
|
else: |
|
self.use_lora = False |
|
|
|
def add_lora(self): |
|
if self.model_config.llm.use_lora: |
|
self.use_lora = True |
|
from peft import get_peft_model, LoraConfig, TaskType |
|
logger.info("Use lora") |
|
if self.model_config.llm.name == 'internlm_20b': |
|
peft_config = LoraConfig( |
|
task_type=TaskType.CAUSAL_LM, inference_mode=False, |
|
r=self.model_config.llm.lora_r, lora_alpha=self.model_config.llm.lora_alpha, lora_dropout=self.model_config.llm.lora_dropout, |
|
target_modules=['wqkv', 'wo', 'w1', 'w2', 'w3', 'output'] |
|
) |
|
else: |
|
peft_config = LoraConfig( |
|
task_type=TaskType.CAUSAL_LM, inference_mode=False, |
|
r=self.model_config.llm.lora_r, lora_alpha=self.model_config.llm.lora_alpha, lora_dropout=self.model_config.llm.lora_dropout, |
|
target_modules=["q_proj", "k_proj", "v_proj", "o_proj", |
|
"gate_proj", "up_proj", "down_proj", "lm_head"] |
|
) |
|
|
|
self.lm = get_peft_model(self.lm, peft_config) |
|
self.lm.enable_input_require_grads() |
|
self.lm.print_trainable_parameters() |
|
|
|
if self.model_config.get("freeze_lora", False): |
|
logger.info("freeze lora") |
|
freeze_module(self.lm) |
|
self.lm.print_trainable_parameters() |
|
|
|
else: |
|
self.use_lora = False |
|
|
|
def add_tokens(self): |
|
num_new_tokens = len(special_tokens) |
|
self.lm.resize_token_embeddings(len(self.tokenizer)) |
|
|
|
input_embeddings = self.lm.get_input_embeddings().weight.data |
|
output_embeddings = self.lm.get_output_embeddings().weight.data |
|
|
|
input_embeddings_avg = input_embeddings[:-num_new_tokens].mean( |
|
dim=0, keepdim=True) |
|
output_embeddings_avg = output_embeddings[:-num_new_tokens].mean( |
|
dim=0, keepdim=True) |
|
print(self.lm.get_input_embeddings().weight.data.shape) |
|
input_embeddings[-num_new_tokens:] = input_embeddings_avg |
|
output_embeddings[-num_new_tokens:] = output_embeddings_avg |
|
|
|
self.model_config.token_at_ids = self.tokenizer.convert_tokens_to_ids([BOX_START])[0] |
|
|
|
def build_loss(self): |
|
self.use_vision_regression_loss = self.model_config.loss.get("use_vision_regression_loss", False) |
|
self.use_bbox_loss = self.model_config.loss.get("add_bbox_loss", False) |
|
self.use_mask_loss = self.model_config.loss.get("use_mask_loss", False) |
|
self.use_temporal_loss = self.model_config.loss.get('use_temporal_loss', False) |
|
if self.use_vision_regression_loss: |
|
self.image_loss_fct = MSELoss() |
|
|
|
|
|
def load_pretrained_weights(self): |
|
if self.model_config.pretrained_paths.get('pretrained_vit_qformer_path', None): |
|
if 'safetensor' in self.model_config.pretrained_paths.pretrained_vit_qformer_path: |
|
from safetensors import safe_open |
|
from safetensors.torch import save_file |
|
state_dict = {} |
|
with safe_open(self.model_config.pretrained_paths.pretrained_vit_qformer_path, framework="pt", device="cpu") as f: |
|
for key in f.keys(): |
|
state_dict[key] = f.get_tensor(key) |
|
else: |
|
state_dict = torch.load(self.model_config.pretrained_paths.pretrained_vit_qformer_path, map_location="cpu") |
|
if "model" in state_dict.keys(): |
|
state_dict = state_dict["model"] |
|
elif "module" in state_dict.keys(): |
|
state_dict = state_dict["module"] |
|
self.check_temp_emb(state_dict) |
|
msg = self.load_state_dict(state_dict, strict=False) |
|
print('Loading vit: ', msg) |
|
logger.info(f"Load ViT and QFormer from {self.model_config.pretrained_paths.pretrained_vit_qformer_path}: {msg}") |
|
|
|
if self.model_config.pretrained_paths.get('pretrained_videochat2', None): |
|
state_dict = torch.load(self.model_config.pretrained_paths.pretrained_videochat2, map_location="cpu") |
|
|
|
new_state_dict = {} |
|
for k in state_dict.keys(): |
|
if 'bert.embeddings' not in k: |
|
new_state_dict[k] = state_dict[k] |
|
state_dict = new_state_dict |
|
|
|
msg = self.load_state_dict(state_dict, strict=False) |
|
print('Loading videochat2: ', msg) |
|
|
|
|
|
def check_temp_emb(self, state_dict): |
|
old_num_frames = self.model_config.vision_encoder.get('origin_num_frames', None) |
|
new_num_frames = self.model_config.vision_encoder.num_frames |
|
if old_num_frames is not None and old_num_frames != new_num_frames: |
|
logger.info(f"interpolate_pos_embed_internvideo2 to {new_num_frames} (origin_num_frames={old_num_frames})!!!") |
|
a = len(state_dict) |
|
interpolate_pos_embed_internvideo2_new(state_dict, self.vision_encoder, orig_t_size=4) |
|
assert a == len(state_dict), state_dict.keys() |
|
|
|
def build_bbox_decoder(self): |
|
self.loc_encoder = nn.Sequential( |
|
nn.Linear(4, self.model_config.llm.hidden_size // 2, dtype=torch.bfloat16), |
|
nn.ReLU(), |
|
nn.Linear(self.model_config.llm.hidden_size // 2, self.model_config.llm.hidden_size, dtype=torch.bfloat16), |
|
) |
|
|
|
self.loc_decoder = nn.Sequential( |
|
nn.Linear(self.model_config.llm.hidden_size, self.model_config.llm.hidden_size // 2, dtype=torch.bfloat16), |
|
nn.ReLU(), |
|
nn.Linear(self.model_config.llm.hidden_size // 2, 4, dtype=torch.bfloat16) |
|
) |
|
self._initialize_bbox_weights() |
|
|
|
def _initialize_bbox_weights(self): |
|
return |
|
|
|
def build_sam(self): |
|
sam2_checkpoint = "/cpfs01/user/heyinan/checkpoints/sam2_hiera_large.pt" |
|
model_cfg = "sam2_hiera_l.yaml" |
|
predictor = build_sam2_video_predictor(model_cfg, sam2_checkpoint, device=self.lm.device) |
|
|
|
self.sam = predictor |
|
freeze_module(self.sam) |
|
|
|
|
|
@property |
|
def dtype(self): |
|
return self.lm.dtype |
|
|
|
|
|
@property |
|
def device(self): |
|
return self.lm.device |
|
|