import logging import numpy as np import torch import torch.nn as nn import torch.nn.functional as F import torch.utils.checkpoint as checkpoint from functools import partial from timm.models.layers import drop_path, to_2tuple, trunc_normal_ logger = logging.getLogger(__name__) def _cfg(url='', **kwargs): return { 'url': url, 'num_classes': 400, 'input_size': (3, 224, 224), 'pool_size': None, 'crop_pct': .9, 'interpolation': 'bicubic', 'mean': (0.5, 0.5, 0.5), 'std': (0.5, 0.5, 0.5), **kwargs } class MLP(nn.Module): """Very simple multi-layer perceptron (also called FFN)""" def __init__(self, input_dim, hidden_dim, output_dim, num_layers, dropout=0): super().__init__() self.num_layers = num_layers h = [hidden_dim] * (num_layers - 1) self.layers = nn.ModuleList( nn.Linear(n, k) for n, k in zip([input_dim] + h, h + [output_dim]) ) self.dropout = dropout if dropout: self.dropout = nn.Dropout(dropout) def forward(self, x): for i, layer in enumerate(self.layers): x = F.relu(layer(x)) if i < self.num_layers - 1 else layer(x) if self.dropout and i < self.num_layers: x = self.dropout(x) return x class PostProcess(nn.Module): """ This module converts the model's output into the format expected by the coco api""" @torch.no_grad() def forward(self, out_sted, frames_id): """Perform the computation for inference evaluation """ # import pdb; pdb.set_trace() b, t, _ = out_sted.shape device = out_sted.device temp_prob_map = torch.zeros(b,t,t).to(device) inf = -1e32 for i_b in range(len(frames_id)): duration = len(frames_id[0]) sted_prob = (torch.ones(t, t) * inf).tril(0).to(device) sted_prob[duration:,:] = inf sted_prob[:,duration:] = inf temp_prob_map[i_b,:,:] = sted_prob temp_prob_map += F.log_softmax(out_sted[:, :, 0], dim=1).unsqueeze(2) + \ F.log_softmax(out_sted[:, :, 1], dim=1).unsqueeze(1) pred_steds = [] for i_b in range(b): prob_map = temp_prob_map[i_b] # [T * T] frame_id_seq = frames_id[i_b] prob_seq = prob_map.flatten(0) max_tstamp = prob_seq.max(dim=0)[1].item() start_idx = max_tstamp // t end_idx = max_tstamp % t pred_sted = [frame_id_seq[start_idx], frame_id_seq[end_idx]+1] pred_steds.append(pred_sted) return pred_steds class DropPath(nn.Module): """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). """ def __init__(self, drop_prob=None): super(DropPath, self).__init__() self.drop_prob = drop_prob def forward(self, x): return drop_path(x, self.drop_prob, self.training) def extra_repr(self) -> str: return 'p={}'.format(self.drop_prob) class Mlp(nn.Module): def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.): super().__init__() out_features = out_features or in_features hidden_features = hidden_features or in_features self.fc1 = nn.Linear(in_features, hidden_features) self.act = act_layer() self.fc2 = nn.Linear(hidden_features, out_features) self.drop = nn.Dropout(drop) def forward(self, x): x = self.fc1(x) x = self.act(x) x = self.drop(x) x = self.fc2(x) x = self.drop(x) return x class Attention(nn.Module): def __init__( self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0., attn_head_dim=None): super().__init__() self.num_heads = num_heads head_dim = dim // num_heads if attn_head_dim is not None: head_dim = attn_head_dim all_head_dim = head_dim * self.num_heads self.scale = qk_scale or head_dim ** -0.5 self.qkv = nn.Linear(dim, all_head_dim * 3, bias=False) if qkv_bias: self.q_bias = nn.Parameter(torch.zeros(all_head_dim)) self.v_bias = nn.Parameter(torch.zeros(all_head_dim)) else: self.q_bias = None self.v_bias = None self.attn_drop = nn.Dropout(attn_drop) self.proj = nn.Linear(all_head_dim, dim) self.proj_drop = nn.Dropout(proj_drop) def forward(self, x): B, N, C = x.shape qkv_bias = None if self.q_bias is not None: qkv_bias = torch.cat((self.q_bias, torch.zeros_like(self.v_bias, requires_grad=False), self.v_bias)) # qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) qkv = F.linear(input=x, weight=self.qkv.weight, bias=qkv_bias) qkv = qkv.reshape(B, N, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4) q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple) q = q * self.scale attn = (q @ k.transpose(-2, -1)) attn = attn.softmax(dim=-1) attn = self.attn_drop(attn) x = (attn @ v).transpose(1, 2).reshape(B, N, -1) x = self.proj(x) x = self.proj_drop(x) return x class Block(nn.Module): def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0., drop_path=0., init_values=None, act_layer=nn.GELU, norm_layer=nn.LayerNorm, attn_head_dim=None): super().__init__() self.norm1 = norm_layer(dim) self.attn = Attention( dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop, attn_head_dim=attn_head_dim) # NOTE: drop path for stochastic depth, we shall see if this is better than dropout here self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() self.norm2 = norm_layer(dim) mlp_hidden_dim = int(dim * mlp_ratio) self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) if init_values > 0: self.gamma_1 = nn.Parameter(init_values * torch.ones((dim)),requires_grad=True) self.gamma_2 = nn.Parameter(init_values * torch.ones((dim)),requires_grad=True) else: self.gamma_1, self.gamma_2 = None, None def forward(self, x): if self.gamma_1 is None: x = x + self.drop_path(self.attn(self.norm1(x))) x = x + self.drop_path(self.mlp(self.norm2(x))) else: x = x + self.drop_path(self.gamma_1 * self.attn(self.norm1(x))) x = x + self.drop_path(self.gamma_2 * self.mlp(self.norm2(x))) return x class PatchEmbed(nn.Module): """ Image to Patch Embedding """ def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768, num_frames=16, tubelet_size=2): super().__init__() img_size = to_2tuple(img_size) patch_size = to_2tuple(patch_size) self.tubelet_size = int(tubelet_size) num_patches = (img_size[1] // patch_size[1]) * (img_size[0] // patch_size[0]) * (num_frames // self.tubelet_size) self.img_size = img_size self.patch_size = patch_size self.num_patches = num_patches self.proj = nn.Conv3d( in_channels=in_chans, out_channels=embed_dim, kernel_size=(self.tubelet_size, patch_size[0], patch_size[1]), stride=(self.tubelet_size, patch_size[0], patch_size[1]) ) logger.info(f'Num of patches: {num_patches}') def forward(self, x, **kwargs): B, C, T, H, W = x.shape # FIXME look at relaxing size constraints # assert H == self.img_size[0] and W == self.img_size[1], \ # f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})." x = self.proj(x).flatten(2).transpose(1, 2) return x # sin-cos position encoding # https://github.com/jadore801120/attention-is-all-you-need-pytorch/blob/master/transformer/Models.py#L31 def get_sinusoid_encoding_table(n_position, d_hid, ckpt_num_frame=-1, cur_frame=12): ''' Sinusoid position encoding table ''' # TODO: make it with torch instead of numpy def get_position_angle_vec(position): return [position / np.power(10000, 2 * (hid_j // 2) / d_hid) for hid_j in range(d_hid)] if ckpt_num_frame != -1 and ckpt_num_frame != cur_frame: logger.info(f"Interpolate position embedding") logger.info(f"Testing frame: {cur_frame}") logger.info(f"Checkpoint frame: {ckpt_num_frame}") T = ckpt_num_frame # checkpoint frame new_T = cur_frame # testing frame n_position = n_position // new_T * T # generate checkpoint position embedding sinusoid_table = np.array([get_position_angle_vec(pos_i) for pos_i in range(n_position)]) sinusoid_table[:, 0::2] = np.sin(sinusoid_table[:, 0::2]) # dim 2i sinusoid_table[:, 1::2] = np.cos(sinusoid_table[:, 1::2]) # dim 2i+1 sinusoid_table = torch.tensor(sinusoid_table, dtype=torch.float, requires_grad=False).unsqueeze(0) # interpolate P = int((n_position // T) ** 0.5) C = d_hid sinusoid_table = sinusoid_table.reshape(-1, T, P, P, C) sinusoid_table = sinusoid_table.permute(0, 2, 3, 4, 1).reshape(-1, C, T) # BHW, C, T sinusoid_table = torch.nn.functional.interpolate(sinusoid_table, size=new_T, mode='linear') sinusoid_table = sinusoid_table.reshape(1, P, P, C, new_T).permute(0, 4, 1, 2, 3) # B, T, H, W, C sinusoid_table = sinusoid_table.flatten(1, 3) return sinusoid_table else: sinusoid_table = np.array([get_position_angle_vec(pos_i) for pos_i in range(n_position)]) sinusoid_table[:, 0::2] = np.sin(sinusoid_table[:, 0::2]) # dim 2i sinusoid_table[:, 1::2] = np.cos(sinusoid_table[:, 1::2]) # dim 2i+1 return torch.tensor(sinusoid_table, dtype=torch.float, requires_grad=False).unsqueeze(0) def get_sinusoid_encoding_table2(n_position=784, d_hid=1024, cur_frame=8, ckpt_num_frame=4, pre_n_position=784): ''' Sinusoid position encoding table ''' # TODO: make it with torch instead of numpy def get_position_angle_vec(position): return [position / np.power(10000, 2 * (hid_j // 2) / d_hid) for hid_j in range(d_hid)] # generate checkpoint position embedding sinusoid_table = np.array([get_position_angle_vec(pos_i) for pos_i in range(pre_n_position)]) sinusoid_table[:, 0::2] = np.sin(sinusoid_table[:, 0::2]) # dim 2i sinusoid_table[:, 1::2] = np.cos(sinusoid_table[:, 1::2]) # dim 2i+1 sinusoid_table = torch.tensor(sinusoid_table, dtype=torch.float, requires_grad=False).unsqueeze(0) print(f"n_position: {n_position}") print(f"pre_n_position: {pre_n_position}") if n_position != pre_n_position: T = ckpt_num_frame # checkpoint frame P = 14 # checkpoint size C = d_hid new_P = int((n_position // cur_frame) ** 0.5) # testing size print(f'Pretraining uses 14x14, but current version is {new_P}x{new_P}') print(f'Interpolate the position embedding') sinusoid_table = sinusoid_table.reshape(-1, T, P, P, C) sinusoid_table = sinusoid_table.reshape(-1, P, P, C).permute(0, 3, 1, 2) sinusoid_table = torch.nn.functional.interpolate( sinusoid_table, size=(new_P, new_P), mode='bicubic', align_corners=False) # BT, C, H, W -> BT, H, W, C -> B, T, H, W, C sinusoid_table = sinusoid_table.permute(0, 2, 3, 1).reshape(-1, T, new_P, new_P, C) sinusoid_table = sinusoid_table.flatten(1, 3) # B, THW, C if cur_frame != ckpt_num_frame: print(f'Pretraining uses 4 frames, but current frame is {cur_frame}') print(f'Interpolate the position embedding') T = ckpt_num_frame # checkpoint frame new_T = cur_frame # testing frame # interpolate P = int((n_position // cur_frame) ** 0.5) # testing size C = d_hid sinusoid_table = sinusoid_table.reshape(-1, T, P, P, C) sinusoid_table = sinusoid_table.permute(0, 2, 3, 4, 1).reshape(-1, C, T) # BHW, C, T sinusoid_table = torch.nn.functional.interpolate(sinusoid_table, size=new_T, mode='linear') sinusoid_table = sinusoid_table.reshape(1, P, P, C, new_T).permute(0, 4, 1, 2, 3) # B, T, H, W, C sinusoid_table = sinusoid_table.flatten(1, 3) # B, THW, C return sinusoid_table class PretrainVisionTransformerEncoder(nn.Module): """ Vision Transformer with support for patch or hybrid CNN input stage """ def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop_rate=0., attn_drop_rate=0., drop_path_rate=0., norm_layer=nn.LayerNorm, init_values=None, num_frames=8, tubelet_size=1, use_learnable_pos_emb=False, use_checkpoint=False, checkpoint_num=0, ckpt_num_frame=-1, with_ln=True, return_index=-1 ): super().__init__() self.num_features = self.embed_dim = embed_dim # num_features for consistency with other models self.patch_embed = PatchEmbed( img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim, num_frames=num_frames, tubelet_size=tubelet_size ) num_patches = self.patch_embed.num_patches self.depth = depth + return_index + 1 self.use_checkpoint = use_checkpoint self.checkpoint_num = checkpoint_num logger.info(f"Use checkpoint: {use_checkpoint}") logger.info(f"Checkpoint number: {checkpoint_num}") logger.info(f"Real runing depth: {self.depth}") # TODO: Add the cls token if use_learnable_pos_emb: self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, embed_dim)) self.img_pos_embed = nn.Parameter(torch.zeros(1, num_patches//(num_frames//tubelet_size) + 1, embed_dim)) else: # sine-cosine positional embeddings if img_size != 224: self.pos_embed = get_sinusoid_encoding_table2(num_patches, embed_dim, ckpt_num_frame=ckpt_num_frame, cur_frame=num_frames//tubelet_size) self.img_pos_embed = get_sinusoid_encoding_table2(num_patches//(num_frames//tubelet_size), embed_dim, cur_frame=1, ckpt_num_frame=1, pre_n_position=14*14) else: self.pos_embed = get_sinusoid_encoding_table(num_patches, embed_dim, ckpt_num_frame=ckpt_num_frame, cur_frame=num_frames//tubelet_size) self.img_pos_embed = get_sinusoid_encoding_table(num_patches//(num_frames//tubelet_size), embed_dim) dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule self.blocks = nn.ModuleList([ Block( dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale, drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer, init_values=init_values) for i in range(self.depth)]) if with_ln: self.norm = norm_layer(embed_dim) else: self.norm = nn.Identity() if use_learnable_pos_emb: trunc_normal_(self.pos_embed, std=.02) @torch.jit.ignore def no_weight_decay(self): return {'pos_embed', 'cls_token'} def forward_features(self, x, use_image=False): x = self.patch_embed(x) if use_image: x = x + self.img_pos_embed.type_as(x).to(x.device).clone().detach() else: x = x + self.pos_embed.type_as(x).to(x.device).clone().detach() B, _, C = x.shape x_vis = x for idx, blk in enumerate(self.blocks): if self.use_checkpoint and idx < self.checkpoint_num: x_vis = checkpoint.checkpoint(blk, x_vis) else: x_vis = blk(x_vis) # with ln ot not x_vis = self.norm(x_vis) return x_vis def forward(self, x, use_image=False): x_vis = self.forward_features(x, use_image) return x_vis class PretrainVisionTransformer(nn.Module): """ Vision Transformer with support for patch or hybrid CNN input stage """ def __init__(self, img_size=224, patch_size=16, encoder_in_chans=3, encoder_embed_dim=768, encoder_depth=12, encoder_num_heads=12, mlp_ratio=4., qkv_bias=True, qk_scale=None, drop_rate=0., attn_drop_rate=0., drop_path_rate=0., norm_layer=partial(nn.LayerNorm, eps=1e-6), init_values=0., use_learnable_pos_emb=False, num_frames=8, tubelet_size=1, use_checkpoint=False, checkpoint_num=0, ckpt_num_frame=4, # the pretrained model uses 4 frames return_index=-1, with_ln=False ): super().__init__() self.encoder = PretrainVisionTransformerEncoder( img_size=img_size, patch_size=patch_size, in_chans=encoder_in_chans, embed_dim=encoder_embed_dim, depth=encoder_depth, num_heads=encoder_num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale, drop_rate=drop_rate, attn_drop_rate=attn_drop_rate, drop_path_rate=drop_path_rate, norm_layer=norm_layer, init_values=init_values, num_frames=num_frames, tubelet_size=tubelet_size, use_learnable_pos_emb=use_learnable_pos_emb, use_checkpoint=use_checkpoint, checkpoint_num=checkpoint_num, ckpt_num_frame=ckpt_num_frame, with_ln=with_ln, return_index=return_index ) logger.info(f'With LN: {with_ln}') logger.info(f'Total {encoder_depth} layer') logger.info(f'Return {encoder_depth+return_index+1}-th layer') self.apply(self._init_weights) def _init_weights(self, m): if isinstance(m, nn.Linear): nn.init.xavier_uniform_(m.weight) if isinstance(m, nn.Linear) and m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.LayerNorm): nn.init.constant_(m.bias, 0) nn.init.constant_(m.weight, 1.0) @torch.jit.ignore def no_weight_decay(self): return {'pos_embed', 'cls_token', 'clip_pos_embed'} def forward(self, x, use_image=False): T = x.shape[2] x_vis = self.encoder(x, use_image) # [B, N_vis, C_e] B, TL, C = x_vis.shape x_vis = x_vis.view(B, T, TL // T, C) return x_vis def build_vit(config): model = PretrainVisionTransformer( img_size=config.vision_encoder.img_size, patch_size=config.vision_encoder.patch_size, encoder_embed_dim=config.vision_encoder.encoder_embed_dim, encoder_depth=config.vision_encoder.encoder_depth, encoder_num_heads=config.vision_encoder.encoder_num_heads, drop_path_rate=config.vision_encoder.drop_path_rate, num_frames=config.vision_encoder.num_frames, tubelet_size=config.vision_encoder.tubelet_size, use_checkpoint=config.vision_encoder.use_checkpoint, checkpoint_num=config.vision_encoder.checkpoint_num, return_index=config.vision_encoder.get('return_index', -1), with_ln=config.vision_encoder.get('with_ln', False), ) model.default_cfg = _cfg() if config.vision_encoder.pretrained: logger.info(f"Loading pretrained weights from {config.vision_encoder.pretrained}") state_dict = torch.load(config.vision_encoder.pretrained, map_location='cpu') model.load_state_dict(state_dict, strict=False) else: logger.info("No pretrained weights!!!") return model