--- base_model: mistralai/Mixtral-8x7B-Instruct-v0.1 inference: false language: - fr - it - de - es - en license: apache-2.0 model_creator: Mistral AI_ model_name: Mixtral 8X7B Instruct v0.1 model_type: mixtral prompt_template: '[INST] {prompt} [/INST] ' quantized_by: OptimizeLLM --- This is Mistral AI's Mixtral Instruct v0.1 model, quantized on 02/24/2024. It works well. # How to quantize your own models with Windows and an RTX GPU: ## Requirements: * git * python # Instructions: The following example starts at the root of D drive and quantizes mistral's Mixtral-9x7B-Instruct-v0.1. ## Windows command prompt - folder setup and git clone llama.cpp * D: * mkdir Mixtral * git clone https://github.com/ggerganov/llama.cpp ## Download llama.cpp Assuming you want CUDA for your NVIDIA RTX GPU(s) use the links below, or grab latest compiled executables from https://github.com/ggerganov/llama.cpp/releases ### Latest version as of Feb 24, 2024: * https://github.com/ggerganov/llama.cpp/releases/download/b2253/cudart-llama-bin-win-cu12.2.0-x64.zip * https://github.com/ggerganov/llama.cpp/releases/download/b2253/llama-b2253-bin-win-cublas-cu12.2.0-x64.zip Extract the two .zip files directly into the llama.cpp folder you just git cloned. Overwrite files as prompted. ## Download Mixtral * Download the full-blast version of the model by downloading all .safetensors, .json, and .model files to D:\Mixtral\: * https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1 ## Windows command prompt - Convert the model to fp16: * D:\llama.cpp>python convert.py D:\Mixtral --outtype f16 --outfile D:\Mixtral\Mixtral-8x7B-Instruct-v0.1.fp16.bin ## Windows command prompt - Quantize the fp16 model to q5_k_m: * D:\llama.cpp>quantize.exe D:\Mixtral\Mixtral-8x7B-Instruct-v0.1.fp16.bin D:\Mixtral\Mixtral-8x7B-Instruct-v0.1.q5_k_m.gguf q5_k_m That's it!