--- language: - en license: apache-2.0 base_model: openai/whisper-small tags: - generated_from_trainer datasets: - librispeech_asr metrics: - wer model-index: - name: Whisper-Small En-10m results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: librispeech type: librispeech_asr config: default split: None args: 'config: en, split: test-clean' metrics: - name: Wer type: wer value: 3.7424325811777654 --- # Whisper-Small En-10m This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the librispeech dataset. It achieves the following results on the evaluation set: - Loss: 0.3635 - Wer: 3.7424 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-07 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 300 - training_steps: 1000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:--------:|:----:|:---------------:|:------:| | 0.482 | 33.3333 | 100 | 0.7436 | 3.4183 | | 0.2402 | 66.6667 | 200 | 0.5833 | 3.4448 | | 0.0135 | 100.0 | 300 | 0.3881 | 3.5834 | | 0.0029 | 133.3333 | 400 | 0.3731 | 3.6324 | | 0.0019 | 166.6667 | 500 | 0.3685 | 3.6568 | | 0.0014 | 200.0 | 600 | 0.3663 | 3.6854 | | 0.0012 | 233.3333 | 700 | 0.3649 | 3.7098 | | 0.0011 | 266.6667 | 800 | 0.3641 | 3.7241 | | 0.001 | 300.0 | 900 | 0.3637 | 3.7465 | | 0.001 | 333.3333 | 1000 | 0.3635 | 3.7424 | ### Framework versions - Transformers 4.41.0.dev0 - Pytorch 2.3.0+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1